點P的直角坐標為(1,-
3
),則點P的極坐標為( 。
分析:根據(jù)點的直角坐標求出ρ,再由1=ρcosθ,-
3
=ρsinθ,可得 θ=-
π
3
,從而求得點P的極坐標.
解答:解:∵點P的直角坐標為(1,-
3
),∴ρ=
1+3
=2,
再由 1=ρcosθ,-
3
=ρsinθ,可得 θ=-
π
3
,
故點P的極坐標為 (2,-
π
3
),
故選C.
點評:本題主要考查把點的極坐標化為直角坐標的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
).若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標方程;
(Ⅱ)試判定直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺讼档脑cO為極點,x軸的正半軸為極軸,已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
)
,若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標方程;  ②試判定直線l和圓C的位置關系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(-1,5),點M的極坐標為(4,
π
2
).若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心,半徑為4.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標方程;
(Ⅱ)試判定直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程選講.
以直角坐標系的原點為極點O,x軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為
4,
π
2
),若直線l經(jīng)過點P,且傾斜角為
π
3
,圓C的半徑為4.
(1)求直線l的參數(shù)方程及圓C的極坐標方程;
(2)試判斷直線l與圓C有位置關系.

查看答案和解析>>

同步練習冊答案