設雙曲線
x2
a2
-
y2
b2
=1(0<a<b)的半焦距為c,直線l過(a,0)(0,b)兩點,已知原點到直線l的距離為
3
4
c
,則雙曲線的離心率為(  )
A、2
B、
3
C、
2
D、
2
3
3
分析:直線l的方程為
x
a
+
y
b
=1
,原點到直線l的距離為
|-ab|
c
=
3
4
c
,∴4ab=
3
c2
,據(jù)此求出a,b,c間的數(shù)量關系,從而求出雙曲線的離心率.
解答:解:∵直線l的方程為
x
a
+
y
b
=1
,c2=a2+b2∴原點到直線l的距離為
|-ab|
c
=
3
4
c
,
4ab=
3
c2
,
∴16a2b2=3c4,
∴16a2(c2-a2)=3c4,∴16a2c2-16a4=3c4,
∴3e4-16e2+16=0,
解得e=
2
3
3
或e=2.0<a<b,∴e=2.
故選A.
點評:e=
2
3
3
,則有0<b<a.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1
的一條漸近線與拋物線y=x2+1只有一個公共點,則雙曲線的離心率為( 。
A、
5
4
B、5
C、
5
2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1
的離心率e=
2
3
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求雙曲線方程;
(2)直線y=kx+5(k≠0)與雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一個圓上,求k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2是離心率為
5
的雙曲線
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右兩個焦點,若雙曲線右支上存在一點P,使(
OP
+
OF2
)•
F2P
=0
(O為坐標原點)且|PF1|=λ|PF2|則λ的值為(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的虛軸長為2,焦距為2
5
,則雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的虛軸長為2,焦距為2
3
,則雙曲線的漸近線方程為( 。

查看答案和解析>>

同步練習冊答案