設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,且,則該橢圓的離心率為   
【答案】分析:先根據(jù),,可得到PF1⊥PF2和∠PF1F2的值,再由|PF1|+|PF2|=|FF2|(cos30°+sin30°)=2a可確定a,c的關(guān)系,進(jìn)而得到離心率的值.
解答:解:由知,PF1⊥PF2
知,∠PF1F2=30°.


故答案為:-1.
點(diǎn)評(píng):本題是有關(guān)橢圓的焦點(diǎn)三角形問(wèn)題,卻披上了平面向量的外衣,實(shí)質(zhì)是解三角形知識(shí)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過(guò)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則橢圓的離心率是( 。
A、
2
2
B、
2
-1
2
C、2-
2
D、
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2作橢圓長(zhǎng)軸的垂線與橢圓相交,其中的一個(gè)交點(diǎn)為P,若△F1PF2為等腰直角三角形,則橢圓的離心率是( 。
A、
2
-1
B、
2
+1
2
C、2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,橢圓短軸的一端點(diǎn)為B,若△F1BF2為等腰直角三角形,則橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10.設(shè)橢圓的兩個(gè)焦點(diǎn)分別為,過(guò)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn),若為等腰直角三角形,則橢圓的離心率為(  )

A             B              

C          D

查看答案和解析>>

同步練習(xí)冊(cè)答案