10.計算${log_2}9•{log_3}5•{log_{\sqrt{5}}}8$=12.

分析 利用對數(shù)的性質(zhì)、換底公式及運算法則求解.

解答 解:${log_2}9•{log_3}5•{log_{\sqrt{5}}}8$
=$\frac{lg9}{lg2}×\frac{lg5}{lg3}×\frac{lg8}{lg\sqrt{5}}$
=$\frac{2lg3}{lg2}×\frac{lg5}{lg3}×\frac{3lg2}{\frac{1}{2}lg5}$
=12.
故答案為:12.

點評 本題考查對數(shù)式化簡求值,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)的性質(zhì)、換底公式及運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若正項等比數(shù)列{an}滿足:a3+a5=4,則a4的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{3}$sin2x+cos2($\frac{π}{4}$-x)-$\frac{1+\sqrt{3}}{2}$(x∈R).
(1)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)=$\frac{1}{2}$,求$\frac{BC}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如果一個數(shù)列從第2項起,每一項與它前一項的差都大于2,則稱這個數(shù)列為“H型數(shù)列”.
(1)若數(shù)列{an}為“H型數(shù)列”,且a1=$\frac{1}{m}$-3,a2=$\frac{1}{m}$,a3=4,求實數(shù)m的取值范圍;
(2)是否存在首項為1的等差數(shù)列{an}為“H型數(shù)列”,且其前n項和Sn滿足Sn<n2+n(n∈N*)?若存在,請求出{an}的通項公式;若不存在,請說明理由.
(3)已知等比數(shù)列{an}的每一項均為正整數(shù),且{an}為“H型數(shù)列”,bn=$\frac{2}{3}$an,cn=$\frac{{a}_{n}}{(n+1)•{2}^{n-5}}$,當(dāng)數(shù)列{bn}不是“H型數(shù)列”時,試判斷數(shù)列{cn}是否為“H型數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知(0.81.2m<(1.20.8m,則實數(shù)m的取值范圍是( 。
A.(-∞,0)B.(0,1)∪(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{{log}_{0.5}}(-x),x<0}\end{array}}\right.$.
(I)求$f(f(-\frac{1}{4}))$的值;
(II)若f(a)>f(-a),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知以$y=\frac{{\sqrt{6}}}{3}x$為一條漸近線的雙曲線C的右焦點為$F(\sqrt{5},0)$.
(1)求該雙曲線C的標準方程;
(2)若斜率為2的直線l在雙曲線C上截得的弦長為$\sqrt{6}$,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.y=x+1與y=$\frac{{x}^{2}+x}{x}$B.f(x)=$\frac{{x}^{2}}{(\sqrt{x})^{2}}$與g(x)=x
C.$f(x)=|x|與g(x)=\root{n}{x^n}$D.$f(x)=x與g(t)={log_a}{a^t}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,側(cè)面PAD同時垂直側(cè)面PAB與側(cè)面PDC.若PA=AB=AD=$\frac{{\sqrt{3}}}{3}$PB,則$\frac{BC}{AD}$=$\frac{3}{2}$,直線PC與底面ABCD所成角的正切值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案