設(shè)橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)過(guò)M(2,
2
),N(
6
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A、B,且
OA 
OB 
?若存在,寫出該圓的方程,并求|AB|取值范圍;若不存在,說(shuō)明理由.
(1)橢圓E過(guò)M、N
4
a2
+
2
b2
=1
6
a2
+
1
b2
=1
a2=8
b2=4
∴橢圓E:
x2
8
+
y2
4
=1
(5分)
(2)假設(shè)存在這樣的圓,設(shè)該圓的切線為y=kx+m,由
y=kx+m
x2
8
+
y2
4
=1

∴(1+2k2)x2+4kmx+2m2-8=0
當(dāng)△=16k2m2-4(1+2k2)(2m2-8)=8(8k2-m2+4)>0
x1+x2=-
4km
1+2k2
x1x2=
2m2-8
1+2k2
y1y2=( kx1+m ) ( kx2+m )=k2x1x2+km ( x1+x2)+m2=
m2-8k2
1+2k2
,要使
OA 
OB 

∴x1x2+y1y2=0∴
2m2-8
1+2k2
+
m2-8k2
1+2k2
=0

∴3m2-8k2-8=0∴k2=
3m2-8
8
≥0

又 8k2-m2+4>0∴
m2>2
3m2≥8
m2
8
3
m≥
2
6
3
 或 m≤-
2
6
3

又y=kx+m與圓心在原點(diǎn)的圓相切
r=
|m|
1+k2
,即r2=
m2
1+k2
=
m2
1+
3m2-8
8
=
8
3
,r=
2
6
3

∴所求圓:x2+y2=
8
3

當(dāng)切線斜率不存在時(shí),切線為x=±
2
6
3
,與橢圓
x2
8
+
y2
4
=1
交于(
2
6
3
,±
2
6
3

或(-
2
6
3
±
2
6
3
),滿足
OA 
OB 

綜上:存在這樣的圓x2+y2=
8
3
滿足條件 (9分)
|AB| =
1+k2
|x1-x2| =
32 (4k4+5k2+1)
3 (4k4+4k2+1)
=
32
3
( 1+
k2
4k4+4k2+1
 )

當(dāng)k≠0時(shí),|AB|=
32
3
(1+
1
4k2+
1
k2
+4
)

4
6
3
< |AB| ≤2
3
(當(dāng)k=±
2
2
時(shí)取等)
當(dāng)k=0時(shí),|AB| =
4
3
6

當(dāng)k不存時(shí),|AB| =
4
3
6

|AB| ∈[ 
4
3
6
 ,  2
3
 ]
(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a,b>0)
M(2.
2
),N(
6
,1)
,O為坐標(biāo)原點(diǎn)
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒在兩個(gè)交點(diǎn)A,B且
OA
OE
?若存在,寫出該圓的方程,關(guān)求|AB|的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)設(shè)橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)過(guò)M(2,
2
),N(
6
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A、B,且
OA 
OB 
?若存在,寫出該圓的方程,并求|AB|取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,A是橢圓E上一點(diǎn),AF1⊥F1F2,原點(diǎn)到直線AF2的距離是
1
3
|OF1|.△AF1F2 的面積是等于橢圓E的離心率e,
(Ⅰ)求橢圓E的方程;
(Ⅱ),若直線l:y=x+m與橢圓E交于B、C兩點(diǎn),問:是否存在實(shí)數(shù)m使∠BF2C為鈍角?如果存在,求出m的范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:
x2
a2
-
y2
b2
=1(a>b>0)的離心率為
2
2
,已知A(a,0),B(0,-b),且原點(diǎn)O到直線AB的距離為
2
3
3

(Ⅰ)  求橢圓E的方程;
(Ⅱ)已知過(guò)點(diǎn)M(1,0)的直線交橢圓E于C,D兩點(diǎn),若存在動(dòng)點(diǎn)N,使得直線NC,NM,ND的斜率依次成等差數(shù)列,試確定點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且過(guò)點(diǎn)M(2,
2
),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在以圓心為原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A、B,且
OA
OB
?若存在,寫出該圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案