分析:由已知中函數(shù)f(x)=3ax-2a+1,我們可得當(dāng)a≠0時(shí),函數(shù)為一次函數(shù),有且只有一個(gè)零點(diǎn),若存在x0∈(-1,1),使f(x0)=0,根據(jù)零點(diǎn)存在定理,我們易得f(-1)•f(1)<0,代入可以得到一個(gè)關(guān)于a的不等式,解不等式即可得到答案.
解答:解:∵f(x)=3ax-2a+1,
當(dāng)a≠0時(shí),函數(shù)有且只有一個(gè)零點(diǎn)
若存在x
0∈(-1,1),使f(x
0)=0,
則f(-1)•f(1)<0
即(-3a-2a+1)•(3a-2a+1)<0
即(-5a+1)•(a+1)<0
解得a<-1或
a>故實(shí)數(shù)a的取值范圍是a<-1或
a>故答案為:a<-1或
a> 點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)零點(diǎn)的判定定理,其中根據(jù)一次函數(shù)只有一個(gè)零點(diǎn)及零點(diǎn)判定定理構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.