如圖,在RT△ABC中,D是斜邊AB上一點,且AC=AD,記∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=CD,求∠CAB的大。

【答案】分析:(Ⅰ)由直角三角形的兩銳角互余及外角性質用α,β表示出∠A和∠ACD,再由AC=AD,利用等邊對等角得到一對角相等,進而得出α與β的關系式,用β表示出α,代入所求式子中,利用誘導公式變形,計算后即可得到值;
(Ⅱ)由BC=CD,利用正弦定理列出關系式,利用誘導公式變形后,將第一問得出的α+β=-β,α=-2β代入,利用誘導公式化簡,再利用二倍角的余弦函數(shù)公式化為關于cosβ的方程,求出方程的解得到cosβ的值,由α和β都為直角三角形的銳角,利用特殊角的三角函數(shù)值求出β的度數(shù),即可得到∠CAB的度數(shù).
解答:解:(Ⅰ)由題意知:∠A=-α,∠ACD=-β,
又AC=AD,
∴∠ADC=∠ACD,
∴α+β=-β,即α=-2β,
則sinα-cos2β=sin(-2β)-cos2β=cos2β-cos2β=0;
(Ⅱ)由BC=CD及正弦定理知:==,
∴sin∠BDC=sin[π-(α+β)]=sin(α+β)=sinα,
由(Ⅰ)知α+2β=,即α+β=-β,α=-2β,
∴sin(-β)=sin(-2β),即cosβ=cos2β=(2cos2β-1),
整理得:2cos2β-cosβ-=0,
解得:cosβ=或cosβ=-(舍去),
∵α,β∈(0,),
∴β=,
則∠CAB=
點評:此題考查了正弦定理,誘導公式,二倍角的余弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點,∠DAC=30°,BD=2,AB=2
3
,則AC的長為(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點P.
(1)若AE=CD,點M為BC的中點,求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
(1)建立適當?shù)淖鴺讼,求曲線E的方程;
(2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設
DM
DN
=λ,試確定實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習冊答案