【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點(diǎn)E,F分別為BC,PD的中點(diǎn),直線PC與平面AEF交于點(diǎn)Q.
(1)若平面平面,求證:.
(2)求直線AQ與平面PCD所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)根據(jù)線面平行的判定定理證得平面,然后根據(jù)線面平行的性質(zhì)定理證得.(2)先根據(jù)四點(diǎn)共面,結(jié)合向量的線性運(yùn)算,求得,也即求得位置.建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,求得線面角的正弦值.
(1)證明:因?yàn)?/span>,平面PC,平面PCD,
所以平面PCD.又因?yàn)?/span>平面PAB,平面平面,所以.
(2)解:連接PE.
因?yàn)?/span>,
所以,
則
設(shè),則.
因?yàn)?/span>A,E,Q,F四點(diǎn)共面,
所以,解得,則.
取AD的中點(diǎn)O,連接OC,OP,由題意可得OC,OD,OP兩兩垂直
如圖,建立空間直角坐標(biāo)系,
設(shè),則,,,.
所以,.
設(shè)平面PCD的一個(gè)法向量為,
則,令,得,即,
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次運(yùn)動(dòng)會(huì)上,某單位派出了由6名主力隊(duì)員和5名替補(bǔ)隊(duì)員組成的代表隊(duì)參加比賽.
(1)如果隨機(jī)抽派5名隊(duì)員上場比賽,將主力隊(duì)員參加比賽的人數(shù)記為,求隨機(jī)變量的數(shù)學(xué)期望;
(2)若主力隊(duì)員中有2名隊(duì)員在練習(xí)比賽中受輕傷,不宜同時(shí)上場;替補(bǔ)隊(duì)員中有2名隊(duì)員身材相對(duì)矮小,也不宜同時(shí)上場,那么為了場上參加比賽的5名隊(duì)員中至少有3名主力隊(duì)員,教練員有多少種組隊(duì)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過曲線的焦點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①函數(shù)與的圖象關(guān)于軸對(duì)稱;
②若函數(shù),則,都有;
③若函數(shù),在上單調(diào)遞增,則;
④若函數(shù),則函數(shù)的最小值為.
其中真命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,平面底面,且,,分別為,的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),且的極小值為.
(Ⅰ)求和的值;
(Ⅱ)若過點(diǎn)可作三條不同的直線與曲線相切,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com