已知函數(shù)f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2]上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
(I)函數(shù)定義域?yàn)閤>0,且f′(x)=2x-(a+2)+
a
x
=
(2x-a)(x-1)
a
…(2分)
①當(dāng)a≤0,即
a
2
≤0
時(shí),令f'(x)<0,得0<x<1,函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1),
令f'(x)>0,得x>1,函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞).
②當(dāng)0<
a
2
<1
,即0<a<2時(shí),令f'(x)>0,得0<x<
a
2
或x>1,
函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,
a
2
)
,(1,+∞).
令f'(x)<0,得
a
2
<x<1
,函數(shù)f(x)的單調(diào)遞減區(qū)間為(
a
2
,1)

③當(dāng)
a
2
=1
,即a=2時(shí),f'(x)≥0恒成立,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞).…(7分)
(Ⅱ)①當(dāng)a≤0時(shí),由(Ⅰ)可知,函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1),f(x)在(1,2]單調(diào)遞增.
所以f(x)在(0,2]上的最小值為f(1)=a+1,
由于f(
1
e2
)=
1
e4
-
2
e2
-
a
e2
+2=(
1
e2
-1)2-
a
e2
+1>0
,
要使f(x)在(0,2]上有且只有一個(gè)零點(diǎn),
需滿足f(1)=0或
f(1)<0
f(2)<0
解得a=-1或a<-
2
ln2

②當(dāng)0<a≤2時(shí),由(Ⅰ)可知,
(。┊(dāng)a=2時(shí),函數(shù)f(x)在(0,2]上單調(diào)遞增;
f(e-4)=
1
e8
-
4
e4
-2<0,f(2)=2+2ln2>0
,所以f(x)在(0,2]上有且只有一個(gè)零點(diǎn).
(ⅱ)當(dāng)0<a<2時(shí),函數(shù)f(x)在(
a
2
,1)
上單調(diào)遞減,在(1,2]上單調(diào)遞增;
又因?yàn)閒(1)=a+1>0,所以當(dāng)x∈(
a
2
,2]
時(shí),總有f(x)>0.
因?yàn)閑 -
2a+2
a
<1<a+2,
所以f(e -
2a+2
a
)=e -
2a+2
a
[e -
2a+2
a
-(a+2)]+(alne -
2a+2
a
+2a+2)<0.
所以在區(qū)間(0,
a
2
)內(nèi)必有零點(diǎn).又因?yàn)閒(x)在(0,
a
2
)內(nèi)單調(diào)遞增,
從而當(dāng)0<a≤2時(shí),f(x)在(0,2]上有且只有一個(gè)零點(diǎn).
綜上所述,0<a≤2或a<-
2
ln2
或a=-1時(shí),f(x)在(0,2]上有且只有一個(gè)零點(diǎn).…(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案