設(shè)f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,并證明對[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個單位,同時將y=g(x)的圖像向上平移b(b>0)個單位,使它們恰有四個交點,求的取值范圍.
(1)在(-∞,-1)和(0,1)上單調(diào)遞增,在(-1,0)和(1,+∞)上單調(diào)遞減,證明見解析(2)<<1+ln 2
(1)F(x)=ln(x2+1)-x2,
F′(x)=.
F′(x),F(xiàn)(x)的值隨x值的變化如下表:
x
(-∞,-1)
(-1,0)
(0,1)
(1,+∞)
F′(x)




F(x)




故F(x)在(-∞,-1)和(0,1)上單調(diào)遞增,在(-1,0)和(1,+∞)上單調(diào)遞減,在[-1,1]上F(x)的最小值F(x)min=F(0)=.
F(x)的最大值F(x)max=F(1)=F(-1)=ln 2.
因此F(x1)+F(x2)≥2F(x)min=1,
而F(x3)≤F(x)max=ln 2,
故F(x1)+F(x2)>F(x3).
(2)由題意可知y=ln(x2+1)-a與y=x2+b的圖像恰有四個交點.
由ln(x2+1)-a=x2+b,
則a+b=ln(x2+1)-x2.
令F(x)=ln(x2+1)-x2,
由(1)可知F(x)極小值=F(0)=,F(xiàn)(x)極大值=F(1)=ln 2.又F(4)=F(-4)<0<F(0),所以F(x)的大致圖像如圖所示,

圖(1)
要使y=a+b與y=F(x)恰有四個交點,則<a+b<ln 2.

得到(b,a)的可行域為如圖(2)所示的陰影部分.

圖(2)
可視為點P(-1,-1)與可行域內(nèi)的點連線的斜率,
<<1+ln 2.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).其中.
(1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(2)若f(x)≤g(x)-1對任意x>0恒成立,求實數(shù)的值;
(3)當<0時,對于函數(shù)h(x)=f(x)-g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當a=時,證明:方程f(x)=f 在區(qū)間(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln(x+1)-x2x.
(1)若關(guān)于x的方程f(x)=-xb在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)b的取值范圍;
(2)證明:對任意的正整數(shù)n,不等式2++…+ >ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實數(shù)的取值范圍;
(3)設(shè),若對任意的兩個實數(shù)滿足,總存在,使得成立,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙二人平時跑步路程與時間的關(guān)系以及百米賽跑路程和時間的關(guān)
系分別如圖①、②所示.問:
 
(1)甲、乙二人平時跑步哪一個跑得快?
(2)甲、乙二人百米賽跑,快到終點時,誰跑得快(設(shè)Δss的增量)?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直線m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直線m既是曲線y=f(x)的切線,又是曲線y=g(x)的切線?如果存在,求出k的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù) = 的最大值為(     )
A.B.C.eD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(2)如果對于任意的s,t∈,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案