函數(shù)的一個單調(diào)減區(qū)間為_______.
的任何一個非空子集

試題分析:設(shè),
因為,
所以 ,又,所以,所以答案可以填的任何一個非空子集。
點評:此題是一個開放題型,答案有很多種,我們只要填的任何一個非空子集都可以。注意考查的是復(fù)合函數(shù)單調(diào)性的判斷。判斷復(fù)合函數(shù)的單調(diào)性,我們只需要把握四個字“同增異減”。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是實常數(shù),函數(shù)對于任何的非零實數(shù)都有,且,則函數(shù){x|})的取值范圍是_.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是連續(xù)的偶函數(shù),且當是單調(diào)函數(shù),則滿足的所有之和為(  )
A.B.      C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若,且,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知其中.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
(3)當時,設(shè)函數(shù)在區(qū)間上的最大值為最小值為,記,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(1)求的表達式,并判斷的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點的連線的斜率大于0;
(3)對于,當時,恒有求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分) 某車間生產(chǎn)某機器的兩種配件A和B,生產(chǎn)配件A成本費y與該車間的工人人數(shù)x成反比,而生產(chǎn)配件B成本費y與該車間的工人人數(shù)x成正比,如果該車間的工人人數(shù)為10人時,這兩項費用y和y分別為2萬元和8萬元,那么要使這兩項費用之和最小,該車間的工人人數(shù)x應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程無實數(shù)解,則實數(shù)的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
函數(shù)對任意實數(shù)都有,
(Ⅰ)分別求的值;
(Ⅱ)猜想 的表達式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案