分析 (1)由頻率分布直方圖先求出分?jǐn)?shù)在[70,80)內(nèi)的概率,由此能求出分?jǐn)?shù)在[70,80)中的人數(shù).
(2)分?jǐn)?shù)在[40,50)的學(xué)生有10人,分?jǐn)?shù)在[50,60)的學(xué)生有15人,由此能求出用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,抽取的5人中分?jǐn)?shù)在[40,50)的人數(shù).
(3)用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,抽取的5人中分?jǐn)?shù)在[40,50)的有2人分?jǐn)?shù)在[50,60)的有3人,由此利用等可能事件概率計算公式能求出分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率.
解答 解:(1)由頻率分布直方圖知小長方形面積為對應(yīng)區(qū)間概率,
所有小長方形面積和為1,因此分?jǐn)?shù)在[70,80)內(nèi)的概率為:
1-(0.005+0.010+0.015×2+0.025)×10=0.3,
∴分?jǐn)?shù)在[70,80)中的人數(shù)為:0.3×100=30人.…5分
(2)分?jǐn)?shù)在[40,50)的學(xué)生有:0.010×10×100=10人,
分?jǐn)?shù)在[50,60)的學(xué)生有:0.015×10×100=15人,
用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,
抽取的5人中分?jǐn)?shù)在[40,50)的人有:5×$\frac{10}{10+15}$=2人.…9分
(3)分?jǐn)?shù)在[40,50)的學(xué)生有10人,分?jǐn)?shù)在[50,60)的學(xué)生有15人,
用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,
抽取的5人中分?jǐn)?shù)在[40,50)的有2人分?jǐn)?shù)在[50,60)的有3人,
5人中隨機抽取2 人共有n=${C}_{5}^{2}$=10種可能,
分別在不同區(qū)間上有m=${C}_{2}^{1}{C}_{3}^{1}$=6種可能.
所以分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率$P=\frac{6}{10}=\frac{3}{5}$.…14分.
點評 本題考查頻率分布直方圖、分層抽樣的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:1:$\sqrt{3}$ | B. | 2:2:$\sqrt{3}$ | C. | 1:1:2 | D. | 1:1:4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4a}$ | B. | $\frac{1}{2a}$ | C. | 2a | D. | 4a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | { 1,4} | B. | { 2,4} | C. | { 9,16} | D. | {2,3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com