(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;

(2)求平面EA1B1與平面A1B1C1的夾角的余弦;

(3)若P是棱A1C1上一點,求CP+PB1的最小值.

 

【答案】

(1)

(2);(3)最小值為。

【解析】

試題分析:(1)由題意,正三棱臺高為  ..2分

   ..4分

(2)設(shè)分別是上下底面的中心,中點,中點.以 為原點,過平行的線為軸建立空間直角坐標(biāo)系. , ,,,

設(shè)平面的一個法向量,則

,取平面的一個法向

,設(shè)所求角為

   ..8分

(3)將梯形旋轉(zhuǎn)到,使其與成平角

,由余弦定理得

的最小值為   ..13分

考點:本題主要考查立體幾何中的體積計算、角的計算。

點評:中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。利用向量則簡化了證明過程,對計算能力要求高。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高三4月月考數(shù)學(xué)文理合卷試卷(解析版) 題型:解答題

(理科)(本小題滿分12分)PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095 – 2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米 ~ 75毫克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo)。從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測值數(shù)據(jù)中隨機地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表所示:

PM2.5日均值

(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

頻數(shù)

3

1

1

1

1

3

(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級的概率;(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;(3)以這10天的PM2.5日均值來估計一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級。(精確到整數(shù))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)(本小題滿分12分)

如圖,在五棱錐中,⊥平面,,

,三角形是等腰三角形.

(Ⅰ)求證:平面⊥平面;

(Ⅱ)求直線與平面所成角的大;

(Ⅲ)求四棱錐的體積.

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2012年高考福建卷理科19)(本小題滿分13分)

如圖,橢圓的左焦點為,右焦點為,離心率。過的直線交橢圓于兩點,且的周長為8。

(Ⅰ)求橢圓的方程。

(Ⅱ)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點。試探究:

     在坐標(biāo)平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2012年高考新課標(biāo)全國卷理科20)(本小題滿分12分)

設(shè)拋物線的焦點為,準(zhǔn)線為,,已知以為圓心,

為半徑的圓兩點;

(1)若,的面積為;求的值及圓的方程;

(2)若三點在同一直線上,直線平行,且只有一個公共點,

求坐標(biāo)原點到距離的比值.

查看答案和解析>>

同步練習(xí)冊答案