在數(shù)列{an}中,
(1)證明:數(shù)列{an-n}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)記,數(shù)列{bn}的前n項和為Sn,求證:
【答案】分析:(1)數(shù)列{an}中,由,知,a1-1=1,由此能夠證明數(shù)列{an-n}是等比數(shù)列,并求出數(shù)列{an}的通項公式.
(2)由(1)得,故,由錯位相減法能求出,由此能夠
解答:解:(1)∵數(shù)列{an}中,,
,a1-1=1,
∴數(shù)列{an-n}是首項為1,且公比為4的等比數(shù)列,
,
(2)由(1)得,

,
相減得=,
,

=,
∵n≥1,∴,

點評:本題考查等比數(shù)列的證明和通項公式的求法,考查不等式的證明.解題時要認真審題,仔細解答,注意構造法和錯位相減法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1、已知點(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1n
)
,則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項an=
2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中a1=
1
2
a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出數(shù)列{an}的通項公式;
(2)設bn=
anan+1
an
+
an+1
,求證:對?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對任意正整數(shù)m均成立,那么就稱{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設S2009為其前2009項的和,則當數(shù)列{xn}的周期為3時,S2009=
1339+a
1339+a

查看答案和解析>>

同步練習冊答案