△ABC的三條邊的中點(diǎn)分別為(2,1),(-3,4),(-1,-1),則△ABC的重心坐標(biāo)為_(kāi)______.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①若a,b,m都是正數(shù),且
a+m
b+m
a
b
,則b>a;      
②已知a,b都為實(shí)數(shù),若|a+b|<|a|+|b|,則ab<0;       
 ③若a,b,c為△ABC的三條邊,則a2+b2+c2>2(ab+bc+ca);
④若a>b>c,則
1
a-b
+
1
b-c
+
1
c-a
>0.
其中正確命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

類(lèi)比平面上的命題(m),給出在空間中的類(lèi)似命題(n)的猜想.
(m)如果△ABC的三條邊BC,CA,AB上的高分別為ha,hb和hc,△ABC內(nèi)任意一點(diǎn)P到三條邊BC,CA,AB的距離分別為Pa,Pb,Pc,那么
pa
ha
+
pb
hb
+
pc
hc
=1

(n)
設(shè)ha,hb,hc,hd為四面體S-ABC的四個(gè)面上的高,P為四面體內(nèi)的任一點(diǎn),
P到相應(yīng)四個(gè)面的距離分別為Pa,Pb,Pc,pd,那么
pa
ha
+
pb
hb
+
pc
hc
+
pd
hd
=1
設(shè)ha,hb,hc,hd為四面體S-ABC的四個(gè)面上的高,P為四面體內(nèi)的任一點(diǎn),
P到相應(yīng)四個(gè)面的距離分別為Pa,Pb,Pc,pd,那么
pa
ha
+
pb
hb
+
pc
hc
+
pd
hd
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定理:三角形的外心O、重心G、垂心H依次在同一條直線(xiàn)(歐拉線(xiàn))上,且
OG
=
1
3
OH
,其中外心O是三條邊的中垂線(xiàn)的交點(diǎn),重心G是三條邊的中線(xiàn)的交點(diǎn),垂心H是三條高的交點(diǎn).如圖,在△ABC中,AB>AC,AB>BC,M是邊BC的中點(diǎn),AH⊥BC(N是垂足),O是外心,G是重心,H是垂心,OM=1,則根據(jù)定理可求得
OG
HN
的最大值是
1
12
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論中正確的是(  )
①對(duì)一切x∈(-∞,1)都有f(x)>0;
②存在x∈R+,使xax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《平面向量》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(上海交大附中)(解析版) 題型:填空題

定理:三角形的外心O、重心G、垂心H依次在同一條直線(xiàn)(歐拉線(xiàn))上,且=,其中外心O是三條邊的中垂線(xiàn)的交點(diǎn),重心G是三條邊的中線(xiàn)的交點(diǎn),垂心H是三條高的交點(diǎn).如圖,在△ABC中,AB>AC,AB>BC,M是邊BC的中點(diǎn),AH⊥BC(N是垂足),O是外心,G是重心,H是垂心,OM=1,則根據(jù)定理可求得的最大值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案