20.設(shè)等比數(shù)列{an}的前n項(xiàng)和記為Sn,若S4=2,S8=6,則S12等于( 。
A.8B.10C.12D.14

分析 直接利用等比數(shù)列的性質(zhì),化簡求解即可.

解答 解:等比數(shù)列{an}的前n項(xiàng)和記為Sn,若S4=2,S8=6,
可得S4,S8-S4,S12-S8,也是等比數(shù)列,S12-S8=$\frac{({S}_{8}-{S}_{4})^{2}}{{S}_{4}}$=$\frac{16}{2}$=8.
S12=14.
故選:D.

點(diǎn)評 本題考查等比數(shù)列的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.集合{1,3,4}共有8個子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)P(1,1),過點(diǎn)P動直線l與圓C:x2+y2-2y-4=0交與點(diǎn)A,B兩點(diǎn).
(1)若|AB|=$\sqrt{17}$,求直線l的傾斜角;
(2求線段AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“0≤m≤1”是“函數(shù)f(x)=cosx+m-1有零點(diǎn)”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時,f(x)=2x-1,則方程f(x)=log6(x-3)在(0,+∞)解的個數(shù)是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在限速為90km/h的公路AB旁有一測速站P,已知點(diǎn)P距測速區(qū)起點(diǎn)A的距離為80m,距測速區(qū)終點(diǎn)B的距離為50m,且∠APB=60°.現(xiàn)測得某輛汽車從A點(diǎn)行駛到B點(diǎn)所用的時間為3s,則此車的速度介于(  )
A.16~19m/sB.19~22m/sC.22~25m/sD.25~28m/s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{x}{x+1}$B.y=1-xC.y=x2-xD.y=1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.$\sqrt{a\sqrt{a\sqrt{a}}}$的值為( 。
A.${a^{\frac{1}{4}}}$B.${a^{\frac{2}{5}}}$C.${a^{\frac{7}{8}}}$D.${a^{\frac{5}{8}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲用1000元人民幣購買了一支股票,隨即他將這支股票賣給乙,甲獲利10%,而后乙又將這支股票返賣給甲,但乙損失了10%,最后甲按乙賣給甲的價格九折將這支股票賣給了乙,在上述股票交易中( 。
A.甲剛好盈虧平衡B.甲盈利1元C.甲盈利9元D.甲虧本1.1元

查看答案和解析>>

同步練習(xí)冊答案