設拋物線y2=8x上一點Py軸的距離是4,則點P到該拋物線焦點的距離是(  )

(A)4 (B)6 (C)8 (D)12

 

B

【解析】∵點Py軸的距離是4,延長使得和準線相交于點Q,|PQ|等于點P到焦點的距離,|PQ|=6,所以點P到該拋物線焦點的距離為6.

【方法技巧】求解拋物線上的點到焦點的距離和到準線的距離問題的技巧

拋物線上的點到焦點的距離與拋物線上的點到準線的距離經常相互轉化:(1)若求點到焦點的距離,則可聯(lián)想點到準線的距離;(2)若求點到準線的距離,則經常聯(lián)想點到焦點的距離.解題時一定要注意.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)六十一第九章第二節(jié)練習卷(解析版) 題型:填空題

某中學開學后從高一年級的學生中隨機抽取80名學生進行家庭情況調查,經過一段時間后,再次從這個年級隨機抽取100名學生進行學情調查,發(fā)現(xiàn)有20名學生上次被抽到過,估計這個學校高一年級的學生人數(shù)為    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十第八章第一節(jié)練習卷(解析版) 題型:選擇題

已知△ABC三頂點坐標A(1,2),B(3,6),C(5,2),MAB中點,NAC中點,則直線MN的方程為(  )

(A)2x+y-8=0 (B)2x-y+8=0

(C)2x+y-12=0 (D)2x-y-12=0

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:解答題

如圖,橢圓C:+=1的焦點在x軸上,左右頂點分別為A1,A,上頂點為B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標原點O,C1C2相交于直線y=x上一點P.

(1)求橢圓C及拋物線C1,C2的方程.

(2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-,0),·的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:選擇題

若雙曲線-=1(a>b>0)的左、右焦點分別為F1,F2,線段F1F2被拋物線x=y2的焦點分成32的兩段,則此雙曲線的離心率為(  )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:填空題

設直線l:2x+y-2=0與橢圓x2+=1的交點為A,B,P是橢圓上的動點,則使得△PAB的面積為的點P的個數(shù)為   .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:選擇題

已知拋物線y=-x2+3上存在關于直線x+y=0對稱的相異兩點A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:解答題

如圖,

在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線ACBD互相垂直,ACBD分別在x軸和y軸上.

(1)求證:F<0.

(2)若四邊形ABCD的面積為8,對角線AC的長為2,·=0,D2+E2-4F的值.

(3)設四邊形ABCD的一條邊CD的中點為G,OHAB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題

若直線2x-y+a=0與圓(x-1)2+y2=1有公共點,則實數(shù)a的取值范圍是(  )

(A)-2-<a<-2+

(B)-2-a-2+

(C)-a

(D)-<a<

 

查看答案和解析>>

同步練習冊答案