7.動點(diǎn)P到點(diǎn)(1,0)的距離與到直線x=3的距離之比為$\frac{1}{2}$,則求P點(diǎn)的軌跡方程.

分析 先設(shè)點(diǎn)P的坐標(biāo),然后根據(jù)動點(diǎn)P到點(diǎn)(1,0)的距離與到直線x=3的距離之比為$\frac{1}{2}$,列方程,整理即可求P點(diǎn)的軌跡方程.

解答 解:設(shè)點(diǎn)P的坐標(biāo)為(x,y),
則由題意得$\frac{|x-3|}{\sqrt{(x-1)^{2}+{y}^{2}}}$=$\frac{1}{2}$,
整理得3x2+y2-22x+35=0,
所以動點(diǎn)P的軌跡方程是3x2+y2-22x+35=0.

點(diǎn)評 本題主要考查直接法求軌跡方程,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,n∈N*,則a30=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.直線x-y+2=0和橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是偶函數(shù),當(dāng)0≤x≤1時,f(x)=x2,且f(x+1)=f(1-x),方程f(x)-lgx=0的根的個數(shù)是( 。
A.2B.7C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖是函數(shù)y=2sin(ωx+φ)(|φ|<$\frac{π}{2}$)的圖象.
(1)求ω、φ的值;
(2)求函數(shù)圖象的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(diǎn)P(cos($\frac{π}{2}$+θ),sin($\frac{3π}{2}$-θ))在第三象限,則角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.四條線段順次首尾相連,它們最多確定的平面?zhèn)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若關(guān)于x的方程sin2x-(2+a)sinx+2a=0,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有兩個實(shí)數(shù)根.
(1)設(shè)t=sinx,利用三角函數(shù)線,求t的取值范圍;
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(n)=cos($\frac{n}{2}$π+$\frac{π}{4}$)(n∈N*),求f(1)+f(2)+f(3)+…+f(2015)的值.

查看答案和解析>>

同步練習(xí)冊答案