若{an}是等比數(shù)列,a4•a5=-27,a3+a6=26,且公比q為整數(shù),則q=
-3
-3
分析:可得a3•a6=a4•a5=-27,進(jìn)而可得a3,a6是方程x2-26x-27=0的實(shí)根,解之討論,滿足公比q為整數(shù)的即可.
解答:解:由等比數(shù)列的性質(zhì)可得a3•a6=a4•a5=-27,
又因?yàn)閍3+a6=26,所以a3,a6是方程x2-26x-27=0的實(shí)根,
解之可得兩實(shí)根為-1,27,
當(dāng)
a3=-1
a6=27
時(shí),q3=
a6
a3
=-27,解之可得q=-3,為整數(shù),滿足題意,
當(dāng)
a3=27
a6=-1
時(shí),q3=
a6
a3
=-
1
27
,解之可得q=-
1
3
,不合題意.
故答案為:-3
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式,涉及一元二次方程根的求解,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n+k,若{an}是等比數(shù)列,則k的值為( 。
A、-
1
2
B、-1
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)二模)對(duì)數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項(xiàng)公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若 {an}是等比數(shù)列,a4a7=-512,a3+a8=124,且公比q為整數(shù),則a10=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果數(shù)列{an}滿足
an+1+an+2an+an+1
=q
(q為非零常數(shù)),就稱數(shù)列{an}為和比數(shù)列,下列四個(gè)說法中:
①若{an}是等比數(shù)列,則{an}是和比數(shù)列;
②設(shè)bn=an+an+1,若{an}是和比數(shù)列,則{bn}也是和比數(shù)列;
③存在等差數(shù)列{an},它也是和比數(shù)列;
④設(shè)bn=(an+an+12,若{an}是和比數(shù)列,則{bn}也是和比數(shù)列.
其中正確的說法是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=a(a>0)
(Ⅰ)若{an}是等差數(shù)列,a2•a3=6,求a的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}是等比數(shù)列,且公比不為1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案