【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過定點A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點,若|PQ|=2 ,求此時直線l的方程.

【答案】
(1)解:若直線l的斜率不存在,則直線l:x=1,符合題意.

若直線l斜率存在,設(shè)直線l的方程為y=k(x﹣1),即kx﹣y﹣k=0.

由題意知,圓心(3,4)到已知直線l的距離等于半徑2,即: =2,解之得k=

此時直線的方程為3x﹣4y﹣3=0.

綜上可得,所求直線l的方程是x=1或3x﹣4y﹣3=0


(2)解:直線與圓相交,斜率必定存在,且不為0,設(shè)直線方程為kx﹣y﹣k=0,

因為|PQ|=2 =2 =2 ,求得弦心距d=

= ,求得 k=1或k=7,

所求直線l方程為x﹣y﹣1=0或7x﹣y﹣7=0


【解析】(1)分直線的斜率存在和不存在兩種情況,分別根據(jù)直線和圓相切的性質(zhì)求得直線的方程,綜合可得結(jié)論.(2)用點斜式設(shè)出直線的方程,利用條件以及點到直線的距離公式,弦長公式求出斜率的值,可得直線的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2+(a2﹣1)x+a﹣2=0的兩根滿足(x1﹣1)(x2﹣1)<0,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,其中為自然對數(shù)的底數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=
(1)求證:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
(3)在(2)的條件下,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,所有棱長均為2,O是底面正方形ABCD中心,E為PC中點,則直線OE與直線PD所成角為(
A.30°
B.60°
C.45°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當為何值時, 軸為曲線的切線;

(2)用表示中的最小值,設(shè)函數(shù),討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當x≥1時,f(x)=2x﹣1,則f( ),f( ),f( )的大小關(guān)系是(
A.f( )<f( )<f(
B.f( )<f( )<f( )??
C.f( )<f( )<f(
D.f( )<f( )<f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.已知
(1)求角A的大小;
(2)若 ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案