【題目】已知拋物線C:y2=2px(p>0)的焦點F到雙曲線 =1的漸近線的距離為1,過焦點F且斜率為k的直線與拋物線C交于A,B兩點,若 ,則k= .
【答案】
【解析】解:拋物線C:y2=2px(p>0)的焦點為F( ,0),
且F到雙曲線 =1的漸近線y=± x的距離為1,
即漸近線的方程為 x﹣3y=0,
∴d= =1,
解得p=4;即焦點坐標F(2,0),
∴過焦點F斜率為k的直線為y=k(x﹣2),
與拋物線C:y2=8x聯(lián)立,消去x,得y2=8( +2),
整理,得ky2﹣8y﹣16k=0,
解得y= .
又∵ ,
∴(4﹣xA , ﹣yA)=2(xB﹣4,yB),
∴yA=﹣2yB;
當k>0時,yA>0,yB<0,
∴ =2(﹣ ),
解得k=2 ;
當k<0時,yA<0,yB>0,
∴﹣ =2 ,
解得k=﹣2 ;
∴k= .
所以答案是: .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線與的交點到軸的距離為,過點作軸的垂線, 為上異于點的一點,以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個交點為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)已知函數(shù)f(x)=2cos x(sin x+cos x).
(1)求f的值;
(2)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二次函數(shù)f(x)的圖象經(jīng)過點(0, ),且f′(x)=﹣x﹣1,則不等式f(10x)>0的解集為( )
A.(﹣3,1)
B.(﹣lg3,0)
C.( ,1)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質量與尺寸之間近似滿足關系式(為大于的常數(shù)),現(xiàn)隨機抽取件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸 | ||||||
質量 |
對數(shù)據(jù)作了初步處理,相關統(tǒng)計量的值如下表:
(1)根據(jù)所給數(shù)據(jù),求關于的回歸方程;
(2)按照某項指標測定,當產(chǎn)品質量與尺寸的比在區(qū)間內時為優(yōu)等品,現(xiàn)從抽取的件合格產(chǎn)品中再任選件,記為取到優(yōu)等品的件數(shù),試求隨機變量的分布列和期望.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解患肺心病是否與性別有關,在某醫(yī)院對入院者用簡單隨機抽樣方法抽取50人進行調查,結果如下列聯(lián)表:
(Ⅰ)是否有的把握認為入院者中患肺心病與性別有關?請說明理由;
(Ⅱ)已知在患肺心病的10位女性中,有3位患胃。F(xiàn)在從這10位女性中,隨機選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為,求的分布列和數(shù)學期望;
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com