精英家教網 > 高中數學 > 題目詳情
已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數,直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)
(Ⅰ);(Ⅱ)詳見解析

試題分析:(I)由等軸雙曲線的離心率為,可得橢圓的離心率,因為直線,與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,利用點到直線的距離公式和直線與圓相切的性質可得,,再利用即可得出;(II)分直線AB的斜率不存在與存在兩種情況討論,①不存在時比較簡單;②斜率存在時,設直線AB的方程為,由橢圓 與橢圓的方程聯立,利用根與系數的關系及斜率公式,再利用即可證明
試題解析:(Ⅰ)由題意得
                                          2分
,解得                        4分
故橢圓C的方程為                              5分
(Ⅱ)當直線AB的斜率不存在時,設A,則B,由k1+k2=2得
,得                           7分
當直線AB的斜率存在時,設AB的方程為y=kx+b(),,

   9分


,             11分

故直線AB過定點(―1,―1)                          13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知線段MN的兩個端點M、N分別在軸、軸上滑動,且,點P在線段MN上,滿足,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與軸、軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知拋物線,設點,為拋物線上的動點(異于頂點),連結并延長交拋物線于點,連結、并分別延長交拋物線于點、,連結,設、的斜率存在且分別為.

(1)若,,,求;
(2)是否存在與無關的常數,是的恒成立,若存在,請將表示出來;若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓過定點,圓心在拋物線上,、為圓軸的交點.
(1)當圓心是拋物線的頂點時,求拋物線準線被該圓截得的弦長.
(2)當圓心在拋物線上運動時,是否為一定值?請證明你的結論.
(3)當圓心在拋物線上運動時,記,,求的最大值,并求出此時圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知坐標平面內,.動點P與外切與內切.
(1)求動圓心P的軌跡的方程;
(2)若過D點的斜率為2的直線與曲線交于兩點A、B,求AB的長;
(3)過D的動直線與曲線交于A、B兩點,線段中點為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓 的離心率為,點,0),(0,)原點到直線的距離為。

(1) 求橢圓的方程;
(2) 設點為(,0),點在橢圓上(與均不重合),點在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知的頂點在橢圓上,在直線上,且
(1)當邊通過坐標原點時,求的長及的面積;
(2)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過拋物線的焦點的直線交拋物線于兩點,且在直線上的射影分別是,則的大小為               .

查看答案和解析>>

同步練習冊答案