設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù)且滿足f(x+2)=f(x+1)-f(x).已知f(1)=lg數(shù)學(xué)公式,f(2)=lg15.
(1)通過計(jì)算f(3),f(4),…,由此猜測(cè)函數(shù)的周期T,并據(jù)周期函數(shù)的定義給出證明;
(2)求f(2009)的值.

解(1)f(1)=lg
f(2)=lg15
f(3)=f(2)-f(1)=lg15-(lg3-lg2)=lg5+lg2=1
f(4)=f(3)-f(2)=1-lg15 …+3
f(5)=f(4)-f(3)=1-lg15-1=-lg15 …+4
f(6)=f(5)-f(4)=-lg15-(1-lg15)=-1 …+5
f(7)=f(6)-f(5)=-1+lg15=lg…+6
猜測(cè):T=6 …+7
證明:f(x+2)=f(x+1)-f(x)
f(x+3)=f(x+2)-f(x+1)=f(x+1)-f(x)-f(x+1)=-f(x)
f(x+6)=-f(x+3)=f(x)
所以 f(x)是一個(gè)周期為6的函數(shù)
(2)因?yàn)閒(2009)=f(6×334+5)=f(5)=-lg15
分析:(1)根據(jù)f(x+2)=f(x+1)-f(x),f(1)=lg,f(2)=lg15,可求出f(3),f(4),…,由此猜測(cè)函數(shù)的周期T,然后證明即可;
(2)根據(jù)周期性可知f(2009)=f(6×334+5)=f(5),從而求出所求.
點(diǎn)評(píng):本題主要考查了函數(shù)的周期,以及遞推關(guān)系和猜測(cè)與證明,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在區(qū)間(-∞,+∞)上以2為周期的函數(shù),對(duì)k∈Z,用Ik表示區(qū)間(2k-1,2k+1],已知當(dāng)x∈I0時(shí),f(x)=x2
(1)求f(x)在Ik上的解析表達(dá)式;
(2)對(duì)自然數(shù)k,求集合Mk={a|使方程f(x)=ax在Ik上有兩個(gè)不等的實(shí)根}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在區(qū)間[a,b]上的函數(shù),且f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]上( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
1
2
x
與函數(shù)g(x)的圖象關(guān)于y=x對(duì)稱,
(1)若g(a)g(b)=2,且a<0,b<0,則
4
a
+
1
b
的最大值為
-9
-9

(2)設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(2-x)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=g(x)-1,若關(guān)于x的方程f(x)-lo
g
(x+2)
a
=0(a>1)在區(qū)間(-2,6]內(nèi)恰有三個(gè)不同實(shí)根,則實(shí)數(shù)a的取值范圍是
(
34
,2)
(
34
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x)=f(x+2),且當(dāng)x∈[-1,0]時(shí)f(x)=(
12
x-1,則關(guān)于x的方程f(x)-log3(x+2)=0在[-1,3]內(nèi)實(shí)根的個(gè)數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍.
(B類)設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案