設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.

(Ⅰ)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率.

(Ⅱ)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實(shí)根的概率.

 

【答案】

(Ⅰ)(Ⅱ)

【解析】本題考查的知識點(diǎn)是幾何概型與古典概型,根據(jù)已知條件計算全部基本事件的個數(shù)(幾何量)和滿足條件的基本事件的個數(shù)(幾何量)是解答概率問題的關(guān)鍵.(1)(2)中沒有結(jié)論或假設(shè)扣2分。

(1)由于a∈{0,1,2,3},b∈{0,1,2},則基本事件總數(shù)為3X4=12種,其中滿足條件方程有實(shí)根,即△≥0,即a2+b2≥4共有8種,代入古典概型公式,即可得到答案.

(2)由于a∈[0,3],b∈[0,2],則基本事件對應(yīng)的平面區(qū)域面積為3X2=6,其中滿足條件方程有實(shí)根,即△≥0,即a2+b2≥4的平面區(qū)域面積為6-π,代入幾何概型公式,即可得到答案.

解  設(shè)事件A為“方程x2+2ax+b2=0有實(shí)根”.

當(dāng)a≥0,b≥0時,方程x2+2ax+b2=0有實(shí)根的充要條件為a≥b.

(1)基本事件共有12個:

(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).

其中第一個數(shù)表示a的取值,第二個數(shù)表示b的取值.

事件A中包含9個基本事件,事件A發(fā)生的概率為

P(A)==.

(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/p>

{(a,b)|0≤a≤3,0≤b≤2}.

構(gòu)成事件A的區(qū)域?yàn)?/p>

{(a,b)|0≤a≤3,0≤b≤2,a≥b}.

所以所求的概率為

P(A)==.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)關(guān)于x的一元二次方程x-x+1=0(n∈N)有兩根α和β,且滿足6α-2αβ+6β=3.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆新疆農(nóng)七師高級中學(xué)高二第一階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題

.已知關(guān)于x的一元二次方程x-2(a-2)x-b+16=0.

(1)若a、b是一枚骰子先后投擲兩次所得到的點(diǎn)數(shù),求方程有兩個正實(shí)數(shù)根的概率;

(2)若a∈[2,6],b∈[0,4],求一元二次方程沒有實(shí)數(shù)根的概率

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省高一下學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題

((本小題滿分12分)

設(shè)關(guān)于x的一元二次方程x-x+1=0(n∈N)有兩根α和β,且滿足 6α-2αβ+6β=3.

(1)試用表示a;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(14分)設(shè)有關(guān)于x的一元二次方程x-2ax+b=0.

(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程沒有實(shí)根的概率。

(2))若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程沒有實(shí)根的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省橫峰中學(xué)高一下學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題

((本小題滿分12分)
設(shè)關(guān)于x的一元二次方程x-x+1=0(n∈N)有兩根α和β,且滿足6α-2αβ+6β=3.
(1)試用表示a;

查看答案和解析>>

同步練習(xí)冊答案