已知①1⊆{1,2,3};②{1}∈{1,2,3};{1,2,3,}⊆{1,2,3};④空集∅⊆{1},在上述四個關(guān)系中錯誤的個數(shù)是( 。
A、1B、2C、3D、4
考點:元素與集合關(guān)系的判斷
專題:計算題,集合
分析:首先確定二者之間是元素與集合,還是集合與集合,再判斷所用符號即可.
解答: 解:①應(yīng)該為1∈{1,2,3};
②應(yīng)該為{1}⊆{1,2,3};
③{1,2,3}⊆{1,2,3},正確;
④空集∅⊆{1},正確;
故選B.
點評:本題考查了集合與元素,集合與集合之間的關(guān)系的判斷與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線:x+ay-2=0與圓心為C的圓:(x-a)2+(y+1)2=4相交于A、B兩點,且△ABC為等邊三角形,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為R球面上有A,B,C三點,且AB=8
3
,∠ACB=60°,球心O到平面ABC的距離為6,則半徑R=( 。
A、8B、10C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=lg(10a),tanβ=lg
1
a
,且α+β=
π
4
,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(x≤0)
2,(x>0)
,f(-4)=f(0),f(-2)=-2,則函數(shù)F(x)=f(x)-x的零點有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為實數(shù),函數(shù)f(x)=x2+2ax+1在區(qū)間[0,1]上有零點,則α的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+4)=f(x),當(dāng)x∈(-2,0)時,f(x)=2x,則f(2014)+f(2015)+f(2016)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(3π+θ)=
1
3
,求
cos(π+θ)
cosθ[cos(π-θ)-1]
+
cos(θ-2π)
cos(θ-π)cos(-θ)-cos(9π+θ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},B={-2,-1,1,2},則A∩B=( 。
A、{-2,-1}
B、{-1,2}
C、{1,2}
D、{-2,-1,1,2}

查看答案和解析>>

同步練習(xí)冊答案