設函數(shù)f(x)=(2x2+1)(5x-a)為R上的奇函數(shù),則a=
 
分析:根據(jù)函,建立方程數(shù)奇偶性的定義或性質進行求解即可.
解答:解:∵f(x)=(2x2+1)(5x-a)為R上的奇函數(shù),
∴f(0)=0,即f(0)=-a=0,
解得 a=0.
故答案為:0.
點評:本題主要考查函數(shù)奇偶性的應用,利用定義在R上的奇函數(shù)滿足f(0)=0是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ex-ax-2.
(1)求函數(shù)y=f(x)的單調區(qū)間;
(2)若a=1且x∈[2,+∞),求f(x)的最小值;
(3)在(2)條件下,(x-k)f′(x)+x+1>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-xlnx+2,
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若存在區(qū)間[a,b]⊆[
12
,+∞)
,使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-2ax+2在區(qū)間(-2,2)上是增函數(shù),則a的范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-2tx+2,其中t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)≤5,求實數(shù)a的取值范圍.
(3)若對任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2x+cosα-2-x+cosα,x∈R,且f(1)=
3
4

(1)求α的取值的集合;
(2)若當0≤θ≤
π
2
時,f(mcosθ)+f(1-m)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案