分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x-2y≥0}\\{y≥|x-2|}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=x-2}\\{x-2y=0}\end{array}\right.$,解得A(4,2),
化目標函數(shù)z=2x+y為y=-2x+z,
由圖可知,當直線y=-2x+z過A時,直線在y軸上的截距最大,z有最大值為2×4+2=10.
故答案為:10.
點評 本題考查簡單線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x2)<f(x-1) | B. | (x-1)f(x)<xf(x+1) | C. | f(x)>x-1 | D. | f(x)<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$+1 | B. | 2$\sqrt{2}$+1 | C. | $\sqrt{5+2\sqrt{2}}$ | D. | $\sqrt{5-2\sqrt{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{ln3}{3},\frac{1}{e})$ | B. | $[\frac{4ln3}{3},\frac{4}{e})$ | C. | $(0,\frac{1}{e})$ | D. | $(0,\frac{4}{e})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com