精英家教網 > 高中數學 > 題目詳情

已知空間四邊形ABCD中,ABBCCDDADBAC,M、N分別為BC、AD的中點.

求:AMCN所成的角的余弦值;

答案:
解析:

  解析:連接DM,過NNE∥AMDME,則∠CNE

  為AMCN所成的角.

  ∵NAD的中點,NE∥AM省 ∴NEAMEMD的中點.

  設正四面體的棱長為1, 則NC·MEMD

  在Rt△MEC中,CE2ME2CM2

  ∴cos∠CNE=,

  又∵∠CNE∈(0,)

  ∴異面直線AM與CN所成角的余弦值為

  注:1、本題的平移點是N,按定義作出了異面直線中一條的平行線,然后先在△CEN外計算CE、CN、EN長,再回到△CEN中求角.

  2、作出的角可能是異面直線所成的角,也可能是它的鄰補角,在直觀圖中無法判定,只有通過解三角形后,根據這個角的余弦的正、負值來判定這個角是銳角(也就是異面直線所成的角)或鈍角(異面直線所成的角的鄰補角).最后作答時,這個角的余弦值必須為正.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點.
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點.
求證:(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點,求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年河南省高三12月月考文科數學卷 題型:解答題

(本小題滿分12分)

如圖,已知空間四邊形ABCD中,BC=AC, AD=BD,E是AB的中點,

求證:

AB⊥平面CDE;

平面CDE⊥平面ABC;

若G為△ADC的重心,試在線段AB上確定一點F,使得GF∥平面CDE.

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點.
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點F,使得GF平面CDE.
精英家教網

查看答案和解析>>

同步練習冊答案