【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)分別為橢圓與坐標(biāo)軸的交點(diǎn),且.過(guò)軸上定點(diǎn)的直線與橢圓交于,兩點(diǎn),點(diǎn)為線段的中點(diǎn).

1)求橢圓的方程;

2)求面積的最大值.

【答案】12

【解析】

1)由題設(shè)知橢圓的離心率和的關(guān)系,結(jié)合,求得的值,即可得到橢圓的標(biāo)準(zhǔn)方程;

2)分直線MN的斜率為0和不為0兩種情況討論,設(shè)直線MN的方程與橢圓的方程聯(lián)立,結(jié)合根與系數(shù)的關(guān)系,求得點(diǎn)Q的坐標(biāo),得出點(diǎn)QAB的距離,求得面積的表達(dá)式,利用基本不等式,即可求解

1)由題意,橢圓的離心率為,所以,

其中,

,得.

又由,得,,

所以橢圓的標(biāo)準(zhǔn)方程為.

2)直線的方程為

①當(dāng)直線的斜率時(shí),直線過(guò)點(diǎn)交橢圓于左右頂點(diǎn),則中點(diǎn)為坐標(biāo)原點(diǎn),此時(shí),

②當(dāng)直線的斜率時(shí),設(shè)直線的方程為,

聯(lián)立方程組,得,∴點(diǎn),

∴點(diǎn)到直線的距離,

∵點(diǎn)在直線的下方,即,

,

設(shè),令,則,

當(dāng)時(shí),,

當(dāng)時(shí),

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí),

當(dāng)時(shí),,此時(shí),

綜上所述,的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a滿足1a≤2,設(shè)函數(shù)f (x)x3x2ax

(Ⅰ) 當(dāng)a2時(shí),求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)4x33bx26(b2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,

求證:g(x)的極大值小于等于10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形是邊長(zhǎng)為2的菱形,,的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.

1)證明:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,點(diǎn)的中點(diǎn),作,交于點(diǎn).

1)求證:平面;

2)求證:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的最小值為2,求的值;

2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列四個(gè)結(jié)論:

① 函數(shù)的最小正周期是;

② 函數(shù)在區(qū)間上是減函數(shù);

③ 函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;

④ 函數(shù)的圖像可由函數(shù)的圖像向右平移個(gè)單位,再向下平移1個(gè)單位得到.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究吸煙與患肺癌的關(guān)系中,通過(guò)收集數(shù)據(jù)、整理分析數(shù)據(jù)得吸煙與患肺癌有關(guān)的結(jié)論,并且在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的,下列說(shuō)法中正確的是(

A.100個(gè)吸煙者中至少有99人患有肺癌

B.1個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺癌

C.100個(gè)吸煙者中一定有患肺癌的人

D.100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒(méi)有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,則由方程所確定;則正確命題序號(hào)為( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面為矩形,AB,BC1,EF分別是AB,PC的中點(diǎn),DEPA.

1)求證:EF∥平面PAD

2)求證:平面PAC⊥平面PDE.

查看答案和解析>>

同步練習(xí)冊(cè)答案