設(shè)O是坐標(biāo)原點(diǎn),點(diǎn)M的坐標(biāo)為(2,1).若點(diǎn)N(x,y)滿足不等式組
x-4y+3≤0
2x+y-12≤0
x≥1
,則使得
OM
ON
取得最大值時(shí)點(diǎn)N個(gè)數(shù)為(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、無(wú)數(shù)個(gè)
分析:先根據(jù)約束條件畫(huà)出可行域,由于
OM
ON
=(2,1)•(x,y)=2x+y,設(shè)z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過(guò)可行域內(nèi)的哪些點(diǎn)時(shí),z最大即可.
解答:精英家教網(wǎng)解:先根據(jù)約束條件畫(huà)出可行域,
OM
ON
=(2,1)•(x,y)=2x+y,
設(shè)z=2x+y,
將最大值轉(zhuǎn)化為y軸上的截距最大,
由于直線z=2x+y與可行域邊界:2x+y-12=0平行,
當(dāng)直線z=2x+y經(jīng)過(guò)直線:2x+y-12=0上所有點(diǎn)時(shí),z最大,
最大為:12.
則使得
OM
ON
取得最大值時(shí)點(diǎn)N個(gè)數(shù)為無(wú)數(shù)個(gè).
故選D.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問(wèn)題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問(wèn)題的介入是線性規(guī)劃問(wèn)題的拓展與延伸,使得規(guī)劃問(wèn)題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省大慶實(shí)驗(yàn)中學(xué)高三(上)開(kāi)學(xué)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)O是坐標(biāo)原點(diǎn),點(diǎn)M的坐標(biāo)為(2,1).若點(diǎn)N(x,y)滿足不等式組,則使得取得最大值時(shí)點(diǎn)N個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省大慶實(shí)驗(yàn)中學(xué)高三(上)開(kāi)學(xué)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)O是坐標(biāo)原點(diǎn),點(diǎn)M的坐標(biāo)為(2,1).若點(diǎn)N(x,y)滿足不等式組,則使得取得最大值時(shí)點(diǎn)N個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省衡陽(yáng)市兩校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)O是坐標(biāo)原點(diǎn),點(diǎn)M的坐標(biāo)為(2,1).若點(diǎn)N(x,y)滿足不等式組,則使得取得最大值時(shí)點(diǎn)N個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山東省高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:選擇題

設(shè)O是坐標(biāo)原點(diǎn),點(diǎn)M的坐標(biāo)為(2,1).若點(diǎn)N(x,y)滿足不等式組,則使得取得最大值時(shí)點(diǎn)N個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.無(wú)數(shù)個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案