已知圓O:x2+y2=r2及圓外一點P(a,b),過點P作圓O的兩條切線PA,PB,切點分別為A,B,求直線AB的方程.

答案:
解析:

  分析:過圓外一點P作圓的切線PA,PB,有PA=PB.由此,以點P為圓心,PA為半徑構造輔助圓,則弦AB可以看作已知圓與輔助圓的公共弦.

  解:由切線長定理得PA=PB,以P為圓心,PA為半徑構造圓P,則AB可看作圓O與圓P的公共弦.如圖,由切線的性質得|PA|2=|PO|2-|OA|2=a2+b2-r2

  所以圓P的方程為(x-a)2+(y-b)2=a2+b2-r2.、

  又圓O的方程為x2+y2=r2,、

 、伲,得ax+by-r2=0.

  所以直線AB的方程為ax+by-r2=0.

  點評:本題若按常規(guī)思路,需先求得切線方程,再設法求得切點坐標,才能求出直線AB的方程.顯然構造輔助圓,將問題轉化為求兩圓的公共弦方程更巧妙.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:遼寧省沈陽二中2011-2012學年高二上學期期中考試數(shù)學文科試題 題型:013

已知圓O:x2+y2=1,點P在直線上,O為坐標原點,若圓O上存在點Q,使∠OPQ=30°,則點P的縱坐標y0的取值范圍是

[  ]
A.

[-2,2]

B.

[0,2]

C.

[-1,1]

D.

[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

       已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點P(a,b)引兩圓切線PA、PB,切點分別為A、B,如圖,滿足|PA|=|PB|;

       (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點P落在根軸上;

       (Ⅱ)求切線長|PA|的最小值;

(Ⅲ)給出定點M(0,2),設P、Q分別為直線l和圓O上動點,求|MP|+|PQ|的最小值及此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓Ox2y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,|PQ|=|PA|成立,如圖.

(1)求a、b間關系;

(2)求|PQ|的最小值;

(3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 已知圓Ox2y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,|PQ|=|PA|成立,如圖.

(1)求ab間關系;

(2)求|PQ|的最小值;

(3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=1,圓C:(x-2)2+(y-4)2=1,由兩圓外一點P(a,b)引兩圓切線PA、PB,切點分別為A、B,如圖,滿足|PA|=|PB|.

(1)求實數(shù)a、b間滿足的等量關系;

(2)求切線長|PA|的最小值;

(3)是否存在以P為圓心的圓,使它與圓O相內切并且與圓C相外切?若存在,求出圓P的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案