設(shè),
,數(shù)列
滿足:
,
.
(Ⅰ)求證數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(Ⅱ)求數(shù)列的通項(xiàng)公式.
(Ⅰ)由,得
,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/f/1xgtt2.png" style="vertical-align:middle;" />,所以數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.
(Ⅱ).
解析試題分析:(Ⅰ)當(dāng)時,由題意得
,所以數(shù)列
的首項(xiàng)為
,由等比數(shù)列定義知,若證數(shù)列
為等比數(shù)列,則需要證明
,其中公比
為常數(shù),為此只須將等式
兩邊同時加上2可得
,此時公比
,從而證明數(shù)列
是等比數(shù)列;( Ⅱ)由(Ⅰ)可得數(shù)列
的通項(xiàng)公式為
,再由等式
,可得
,此時有
,
, ,
,將上列式子兩邊相加可得
,即
,再由等比數(shù)列前
項(xiàng)和公式,可得出數(shù)列
的通項(xiàng)公式(疊加消項(xiàng)法在求數(shù)列的通項(xiàng)、前
項(xiàng)和中常常用到,其特點(diǎn)是根據(jù)等式兩邊結(jié)構(gòu)特征,一邊相加可消掉中間項(xiàng),另一邊相加可以得到某一特殊數(shù)列或是常數(shù)).
試題解析:(Ⅰ)由,得
,所以
4分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/f/1xgtt2.png" style="vertical-align:middle;" />,所以數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列. 6分
(Ⅱ)由(Ⅰ)知,則
,所以
. 8分
令,疊加得
,
12分
考點(diǎn):1.等比數(shù)列定義;2.數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-1;數(shù)列{bn}滿足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項(xiàng)和
滿足
,又
,
.
(1)求實(shí)數(shù)k的值;
(2)求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,
,若函數(shù)
,在點(diǎn)
處切線過點(diǎn)
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列的前
項(xiàng)和為
,數(shù)列
的前
項(xiàng)和為
,且
.
⑴證明:數(shù)列是等比數(shù)列,并寫出通項(xiàng)公式;
⑵若對
恒成立,求
的最小值;
⑶若成等差數(shù)列,求正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,
為其前
項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列
是等比數(shù)列;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列滿足:
,且
是
、
的等差中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列滿足
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列
的前
項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,
是一個與
無關(guān)的常數(shù),若
恰為等比數(shù)列
的前三項(xiàng),
(1)求的通項(xiàng)公式.
(2)記數(shù)列,
的前三
項(xiàng)和為
,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com