雙曲線的離心率是   
【答案】分析:由雙曲線的標準方程可以求得a 和 c,從而求得離心率e= 的值.
解答:解:由雙曲線可得a=5,b=4,
∴c=,∴e==,
故答案為:
點評:本題考查雙曲線的定義和標準方程,以及簡單性質(zhì)的應(yīng)用,求出c=,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)已知雙曲線x2-
y2
a
=1(a>0)
的一條漸近線與直線x-2y+3=0垂直,則該雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是雙曲線
x2
a2
-
y2
b2
=1
上的點,F(xiàn)1、F2是其焦點,雙曲線的離心率是
5
4
,且∠F1PF2=900,若△F1PF2的面積為9,則a+b的值(a>0,b>0)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)為雙曲線
x2
a2
-
y2
b2
=1
的左焦點,A是它的右頂點,B1B2為虛軸,若∠FB1A=90°,則雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線中心在原點,一個焦點為F1(-
5
,0)
,點P在雙曲線上,且線段PF1的中點坐標為(0,2),則此雙曲線的離心率是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)如圖1所示,一平面曲邊四邊形ABCD中,曲邊BC是某雙曲線的一部分,該雙曲線的虛軸所在直線為l,邊AD在直線l上,四邊形ABCD繞直線l旋轉(zhuǎn)得到一個幾何體.若該幾何體的三視圖及其部分尺寸如圖2所示,其中俯視圖中小圓的半徑為1,則該雙曲線的離心率是( 。

查看答案和解析>>

同步練習冊答案