如圖, 在中,,邊上一點,,則的長為          .

 

 

【答案】

【解析】

試題分析:在中,由余弦定理得,又,則,在中,由正弦定理得,∴

考點:1、正弦定理;2、余弦定理.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省信陽市高三第一次調(diào)研數(shù)學試卷(文科)(解析版) 題型:解答題

請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省煙臺市萊州一中高三第三次質(zhì)量檢測數(shù)學試卷(文科)(解析版) 題型:解答題

請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海華師大一附中高三第二學期開學檢測試題數(shù)學 題型:填空題

如圖,在中,,,是邊的中點,則。

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省許昌市六校高二下學期期末考試(理科)數(shù)學卷 題型:選擇題

如圖,在中,是邊的三等分點,中點,,交,則等于

 

 

(A)       (B)       (C)     (D)

 

 

查看答案和解析>>

同步練習冊答案