已知△ABC的頂點B、C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是( )
A.
B.6
C.
D.12
【答案】分析:由橢圓的定義橢圓上一點到兩焦點的距離之和等于長軸長2a,可得△ABC的周長.
解答:解:由橢圓的定義橢圓上一點到兩焦點的距離之和等于長軸長2a,
可得△ABC的周長為4a=,
所以選C
點評:本題主要考查數(shù)形結(jié)合的思想和橢圓的基本性質(zhì),難度中等
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點B、C在橢圓
x2
3
+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點B(-1,-3),AB邊上的高CE所在直線的方程為x-3y-1=0,BC邊上中線AD所在直線的方程為8x+9y-3=0.求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•蘭州模擬)已知△ABC的頂點B、C在橢圓
x2
12
+
y2
16
=1
上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△ABC的周長是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•長寧區(qū)二模)已知△ABC的頂點B、C在橢圓
x2
3
+y2=1上,且BC邊經(jīng)過橢圓的一個焦點,頂點A是橢圓的另一個焦點,則△ABC的周長是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點B,C在橢圓x2+3y2=3上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△ABC的周長是( 。

查看答案和解析>>

同步練習冊答案