等差數(shù)列{am}的前m項和為Sm,已知S3=,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{am}的通項公式.
(2)若{am}又是等比數(shù)列,令bm= ,求數(shù)列{bm}的前m項和Tm.
(1)am=3或am="2m-1" (2)Tm= 

試題分析:(1)首先根據(jù)等差數(shù)列的性質(zhì),把已知條件轉(zhuǎn)化為關(guān)于a2的方程,解出a2的值,然后再根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件列出關(guān)于a2、d的方程,求出公差d即可求出通項公式;(2)
試題解析:(1)設(shè)數(shù)列{am}的公差為d,由S3=,可得3a2=,解得a2=0或a2=3.
由S1,S2,S4成等比數(shù)列,可得 ,由,故 .
若a2=0,則,解得d=0.此時Sm=0.不合題意;
若a2=3,則,解得d=0或d=2,此時am=3或am=2m-1.
(2)若{am}又是等比數(shù)列,則Sm=3m,所以bm=== ,
故Tm=(1- )+( )+()+…+()=1-=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)同時滿足:①不等式 的解集有且只有一個元素;②在定義域內(nèi)存在,使得不等式成立 設(shè)數(shù)列的前項和為
(1)求數(shù)列的通項公式;
(2)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令為正整數(shù)),求數(shù)列的變號數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題中,真命題的序號是             .
中,
②數(shù)列{}的前n項和,則數(shù)列{}是等差數(shù)列.
③銳角三角形的三邊長分別為3,4,,則的取值范圍是.
④等差數(shù)列{}前n項和為。已知+-=0,=38,則m=10.
⑤常數(shù)數(shù)列既是等差數(shù)列又是等比數(shù)列.
⑥數(shù)列{}滿足,,則數(shù)列{}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列滿足:,且對任意的正整數(shù)都有,則數(shù)列的通項公式=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{}中,各項都是正數(shù),且a1, a3,2a2成等差數(shù)列,則=(    )
A.1-B.1+C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列{}的前n項和為,已知=-2012,=2,則=(    )
A.-2013B.2013C.-2012D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是等差數(shù)列,,公差,為其前項和,若成等比數(shù)列,則    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是公差為正數(shù)的等差數(shù)列,   (   )
A.40  B.50  C.60  D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,若,則                

查看答案和解析>>

同步練習(xí)冊答案