函數(shù)f(x)=
x
1-x2
( 。
A.在(-1,1)上單調(diào)遞增
B.在(-1,0)上單調(diào)遞增,在(0,1)上單調(diào)遞減
C.在(-1,1)上單調(diào)遞減
D.在(-1,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增
f(x)=
x
1-x2
的定義域?yàn)椋簒|1-x2>0=(-1,1)
定義域是一個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間
又因?yàn)?span dealflag="1" mathtag="math" >f(-x)=
-x
1-x2
=-f(x)
所以函數(shù)是定義在(-1,1)上的奇函數(shù)
不難得出當(dāng)x>0時(shí),f(x)=
x
1-x2
=
1
1
x
-x
,函數(shù)為增函數(shù)
所以函數(shù)是區(qū)間(-1,1)上的增函數(shù)
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=
x1+|x|
,下列結(jié)論正確的是

①f(x)在(-∞,+∞)上不是單調(diào)函數(shù)
②?m∈(0,1),使得方程f(x)=m有兩個(gè)不等的實(shí)數(shù)解;
③?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn);
④?x1,x2∈R,若x1≠x2,則f(x1)≠f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)三位同學(xué)在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時(shí),分別給出下面三個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)?nbsp;(-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立.
你認(rèn)為上述三個(gè)結(jié)論中正確的個(gè)數(shù)有
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
x1+|x|
,則滿足f(2-x2)+f(x)<0的x的取值范圍是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x).設(shè)數(shù)列{an}滿足a1=1,an+1=f-1(an)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}滿足b1=
1
2
,bn+1=(1+bn)2f-1(bn)
,求證:對(duì)一切正整數(shù)n≥1都有
1
a1+b1
+
1
2a2+b2
+
+
1
nan+bn
<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽(yáng)一模)已知函數(shù)f(x)=
αx
1+xα
(x>0,α
為常數(shù)),數(shù)列{an}滿足:a1=
1
2
,an+1=f(an),n∈N*.
(1)當(dāng)α=1時(shí),求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,證明對(duì)?n∈N*有:a1a2a3+a2a3a4+…+anan+1an+2=
n(n+5)
12(n+2)(n+3)
;
(3)若α=2,且對(duì)?n∈N*,有0<an<1,證明:an+1-an
2
+1
8

查看答案和解析>>

同步練習(xí)冊(cè)答案