設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+的值域,集合C為不等式(ax-)(x+4)≤0的解集.

(1)求A∩B;

(2)若C⊆∁RA,求a的取值范圍.

 

【答案】

(1) (-4,-3]∪[1,2) (2)

【解析】本題主要考查了集合的交并補(bǔ)混合運(yùn)算,較為簡(jiǎn)單,關(guān)鍵是將各集合的元素計(jì)算出來.

(1)分別計(jì)算出幾何A,B,再計(jì)算A∩B即可;

(2)根據(jù)條件再由(1)容易計(jì)算.

解:(1)由-x2-2x+8>0,解得A=(-4,2),

又y=x+=(x+1)+-1,

所以B=(-∞,-3]∪ [1,+∞).

所以A∩B=(-4,-3]∪[1,2).

(2)因?yàn)?#8705;RA=(-∞,-4]∪[2,+∞).

 (x+4)≤0,知a≠0.

①當(dāng)a>0時(shí),由 (x+4)≤0,得C=,不滿足C⊆∁RA;

②當(dāng)a<0時(shí),由 (x+4)≥0,得C=(-∞,-4)∪,欲使C⊆∁RA,則≥2,

解得-≤a<0或0<a≤.

又a<0,所以-≤a<0.

綜上所述,所求a的取值范圍是 .

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012屆山東省微山一中高三10月月考理科數(shù)學(xué)試卷 題型:解答題

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+的值域,集合C為不等式(ax-)(x+4)≤0的解集. (1)求A∩B; (2)若C⊆∁RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省武威市高二下學(xué)期模塊檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+的值域.求A∩B

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三10月月考理科數(shù)學(xué)試卷 題型:解答題

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+的值域,集合C為不等式(ax-)(x+4)≤0的解集. (1)求A∩B; (2)若C⊆∁RA,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A為函數(shù)y =ln(-x2-2x+8)的定義域,集合B為函數(shù)

yx的值域,集合C為不等式(ax)(x+4)≤0的解集.

(1) 求AB; (2) 若,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案