命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件
【答案】分析:命題“?x∈R,使x2+ax-4a<0為假命題”,等價于命題“?x∈R,使x2+ax-4a≥0為真命題”,故△=a2+16a≤0,由此得到-16≤a≤0;由-16≤a≤0,知△=a2+16a≤0,故命題“?x∈R,使x2+ax-4a≥0為真命題”,所以命題“?x∈R,使x2+ax-4a<0為假命題”.由此得到命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的充要條件.
解答:解:∵命題“?x∈R,使x2+ax-4a<0為假命題”,
∴命題“?x∈R,使x2+ax-4a≥0為真命題”,
∴△=a2+16a≤0,
∴-16≤a≤0,
即命題“?x∈R,使x2+ax-4a<0為假命題”⇒“-16≤a≤0”;
∵-16≤a≤0,
∴△=a2+16a≤0,
∴命題“?x∈R,使x2+ax-4a≥0為真命題”,
∴命題“?x∈R,使x2+ax-4a<0為假命題”,
即命題“?x∈R,使x2+ax-4a<0為假命題”⇒“-16≤a≤0”.
故命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的充要條件.
故選C.
點評:本題考查必要條件、充分條件、充要條件的判斷和應用,是基礎題.解題時要認真審題,仔細解答.