【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)(理)求ξ的分布列和數(shù)學(xué)期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.

【答案】
(1)解:基本事件總數(shù)為6×6=36,

若使方程有實(shí)根,則△=b2﹣4c≥0,即

當(dāng)c=1時(shí),b=2,3,4,5,6;

當(dāng)c=2時(shí),b=3,4,5,6;

當(dāng)c=3時(shí),b=4,5,6;

當(dāng)c=4時(shí),b=4,5,6;

當(dāng)c=5時(shí),b=5,6;

當(dāng)c=6時(shí),b=5,6,

目標(biāo)事件個(gè)數(shù)為5+4+3+3+2+2=19,

因此方程x2+bx+c=0有實(shí)根的概率為


(2)解:(理)由題意知,ξ=0,1,2,則 ,

故ξ的分布列為

0

1

2

P

ξ的數(shù)學(xué)期望

(文)


(3)解:記“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5”為事件M,“方程ax2+bx+c=0有實(shí)根”為事件N,

,


【解析】(1)根據(jù)題意可得基本事件總數(shù)為6×6=36,若使方程有實(shí)根,則△=b2﹣4c≥0,即 ,再利用列舉的方法求出目標(biāo)事件個(gè)數(shù),進(jìn)而得到答案.(2)(理)由(1)可得ξ=0,1,2,則 , ,進(jìn)而得到分布列與數(shù)學(xué)期望.(文)由(1)可得ξ=1及方程只有一個(gè)根情況所包含的基本時(shí)間數(shù),進(jìn)而求出其發(fā)生的概率.(3)計(jì)算出“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5”的概率與“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5并且方程x2+bx+c=0有實(shí)根”的概率,進(jìn)而利用條件概率的公式可得答案.
【考點(diǎn)精析】關(guān)于本題考查的離散型隨機(jī)變量及其分布列,需要了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,a,b,c是三個(gè)內(nèi)角A,B,C的對(duì)邊,關(guān)于x的不等式 的解集是空集.
(1)求角C的最大值;
(2)若 ,△ABC的面積 ,求當(dāng)角C取最大值時(shí)a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣(a+2)x+x2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意a∈[4,10],x1 , x2∈[1,2],恒有| |≤ 成立,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2﹣ax,其中a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意x∈[1,+∞),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)定點(diǎn) ,動(dòng)點(diǎn)P滿足 .設(shè)動(dòng)點(diǎn)P的軌跡為曲線E,直線 .
(1)求曲線E的軌跡方程;
(2)若l與曲線E交于不同的C,D兩點(diǎn),且 (O為坐標(biāo)原點(diǎn)),求直線l的斜率;
(3)若 是直線l上的動(dòng)點(diǎn),過(guò)Q作曲線E的兩條切線QM,QN,切點(diǎn)為M,N,探究:直線MN是否過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)比較下列兩組實(shí)數(shù)的大。 ① ﹣1與2﹣ ;②2﹣ ;
(Ⅱ)類(lèi)比以上結(jié)論,寫(xiě)出一個(gè)更具一般意義的結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) , .
(1)求 的定義域;
(2)判斷并證明 的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a2x a),其中f(x)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)求函數(shù)g(x)的定義域;
(3)若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱(chēng)該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱(chēng)該位置關(guān)系為“平行相離”;否則稱(chēng)為“平行相交”.已知直線l1ax3y60l22x(a1)y60與圓Cx2y22xb21(b>0)的位置關(guān)系是“平行相交”,則實(shí)數(shù)b的取值范圍為 (   )

A. ( ) B. (0, )

C. (0, ) D. (, )(,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案