已知函數(shù)f(x)=mx+n的圖象經(jīng)過(guò)點(diǎn)A(1,2),B(-1,0),且函數(shù)h(x)=2p
x
(p>0)與函數(shù)f(x)=mx+n的圖象只有一個(gè)交點(diǎn).
(1)求函數(shù)f(x)與h(x)的解析式;
(2)設(shè)函數(shù)F(x)=f(x)-h(x),求F(x)的最小值與單調(diào)區(qū)間;
(3)設(shè)a∈R,解關(guān)于x的方程log4[f(x-1)-1]=log2h(a-x)-log2h(4-x).
分析:(1)將點(diǎn)A(1,2),B(-1,0),坐標(biāo)代入f(x)=mx+n可得函數(shù)f(x)的解析式,進(jìn)而聯(lián)立方程后根據(jù)函數(shù)h(x)=2p
x
(p>0)與函數(shù)f(x)=mx+n的圖象只有一個(gè)交點(diǎn),根據(jù)二次方程根的個(gè)數(shù)與△的關(guān)系求出p值,得到h(x)的解析式;
(2)由(1)求出函數(shù)F(x)=f(x)-h(x)的解析式,結(jié)合二次函數(shù)的圖象和性質(zhì)可得F(x)的最小值與單調(diào)區(qū)間;
(3)原方程可化為:log2
4-x
x-1
)=log2
a-x
,即
1<x<4
x<a
a=-(x-3)2+5
,根據(jù)二次函數(shù)的圖象和性質(zhì)分類(lèi)討論后綜合討論結(jié)果可得答案.
解答:解:(1)∵函數(shù)f(x)=mx+n的圖象經(jīng)過(guò)點(diǎn)A(1,2),B(-1,0),
m+n=2
-m+n=0

解得:m=n=1
∴f(x)=x+1
由函數(shù)h(x)=2p
x
(p>0)與函數(shù)f(x)=x+1的圖象只有一個(gè)交點(diǎn).
可得x-2p
x
+1
=0有且只有一個(gè)解
即△=4p2-4=0,
又∵p>0
∴p=1
h(x)=2
x

(2)由(1)得F(x)=f(x)-h(x)=x-2
x
+1
=(
x
-1)2,
當(dāng)
x
=1
,即x=1時(shí),F(xiàn)(x)min=0.         …(6分)
F(x)在[0,1]為減函數(shù),在[1,+∞)為增函數(shù).   …(8分)
(3)原方程可化為:log4(x-1)=log2
a-x
-log2
4-x

1
2
log2(x-1)=log2
a-x
-log2
4-x

1
2
log2(x-1)+log2
4-x
=log2
4-x
x-1
)=log2
a-x

x-1>0
4-x>0
a-x>0
a-x=(x-1)(4-x)

1<x<4
x<a
a=-(x-3)2+5
…(10分)
令y═-(x-3)2+5

由上圖可知:
①當(dāng)1<a≤4時(shí),原方程有一解:x=3-
5-a

②當(dāng)4<a<5時(shí),原方程有兩解:x=3-
5-a
,x=3+
5-a
,
③當(dāng)a=5時(shí),原方程有一解:x=3
④當(dāng)a≤1或a>5時(shí),原方程無(wú)解
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度較大,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過(guò)點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿(mǎn)足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對(duì)稱(chēng)軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=
3
,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評(píng)分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2

(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時(shí),實(shí)數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案