如圖是三棱柱的三視圖,正(主)視圖和俯視圖都是矩形,側(cè)(左)視圖為等邊三角形,的中點.
          
(1)求證:∥平面
(2)設(shè)垂直于,且,求點到平面的距離.
(1)根據(jù)線面平行的判定定理可知,當(dāng)成立時得到證明。
(2)

試題分析:(1)由三視圖畫出直觀圖,如圖,

這是一個正三棱柱,連接,交點為,則的中點,連接,
因為為中點,所以,       6分
(2)過,垂足為,連接,
因為側(cè)面垂直于底面,所以,所以內(nèi)的射影為,由,
用等體積法          12分
點評:主要是考查了空間中線面平行的判定以及高度的求解,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱柱

(1)當(dāng)正視方向與向量的方向相同時,畫出四棱錐的正視圖(要求標(biāo)出尺寸,并寫出演算過程);
(2)若M為PA的中點,求證:求二面角
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是不同的兩條直線,是不重合的兩個平面,則下列命題中為真命題的是(  )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知:是不同的直線,是不同的平面,給出下列五個命題:
①若垂直于內(nèi)的兩條直線,則
②若,則平行于內(nèi)的所有直線;
③若;
④若
⑤若.其中正確命題的序號是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面和直線,給出條件:①;②;③;④;⑤.為使,應(yīng)選擇下面四個選項中的條件(   )
A.①⑤B.①④C.②⑤D.③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,,點在棱上.

(Ⅰ)  求證:平面平面
(Ⅱ)  當(dāng),且時,確定點的位置,即求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,分別為的中點,,且

(1)證明:;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圖一所示的平面圖形中,是邊長為 的等邊三角形,是分別以為底的全等的等腰三角形,現(xiàn)將該平面圖形分別沿折疊,使所在平面都與平面垂直,連接,得到圖二所示的幾何體,據(jù)此幾何體解決下面問題.

(1)求證:;
(2)當(dāng)時,求三棱錐的體積
(3)在(2)的前提下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在棱長為的正方體中,分別為的中點.

(1)求直線與平面所 成 角的大。
(2)求二面角的大。

查看答案和解析>>

同步練習(xí)冊答案