6.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,則f(f(3))=3.

分析 由已知得f(3)=23=8,從而f(f(3))=f(8),由此能求出結果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,
∴f(3)=23=8,
f(f(3))=f(8)=log28=3.
故答案為:3.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.復數(shù)$\frac{1-{i}^{3}}{1-i}$(i是虛數(shù)單位)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-a是奇函數(shù)
(1)求實數(shù)a的值;
(2)判斷函數(shù)在R上的單調性并用函數(shù)單調性的定義證明;
(3)對任意的實數(shù)x,不等式f(x)<m-1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=log2(1-x)-log2(1+x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)求使f(x)>0的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知集合A={x|x≥1},B={x|x≥a},若A$\underline?B$,則實數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若a<0,b>0,則下列不等式恒成立的是( 。
A.a2<b2B.$\sqrt{-a}<\sqrt$C.$\frac{1}{a}<\frac{1}$D.$\frac{a}$+$\frac{a}$≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)y=f(x)是奇函數(shù).若當x>0時,f(x)=x+lgx,則當x<0時,f(x)=x-lg(-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若對于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移φ($0<φ<\frac{π}{2}$)個單位后,所得函數(shù)為偶函數(shù),則φ=$\frac{5π}{12}$.

查看答案和解析>>

同步練習冊答案