,求。

 

【答案】

【解析】思路分析:

1)題意分析:已知的關(guān)系式,求,相當(dāng)于有兩個(gè)未知數(shù),但只有一個(gè)方程,顯然解不出來(lái)。所以解此題的關(guān)鍵在于再找到一個(gè)的關(guān)系式。

2)解題思路:用去替換已知式中的,可以再造一個(gè)的關(guān)系式,然后解方程組求解。

解:,用去替換式中的,

,即有

解方程組消去,得。

解題后的思考:若已知滿足某個(gè)等式,這個(gè)等式除是未知量外,還出現(xiàn)其他未知量(如,等),可以利用相互代換得到方程組,消去,進(jìn)而得到的解析式。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù) f(x)=
1
2
x2-2alnx+(a-2)x
,a∈R.
(Ⅰ)當(dāng) a=1時(shí),求函數(shù) f(x)的最小值;
(Ⅱ)當(dāng)a<0時(shí),討論函數(shù) f(x)的單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù)a,對(duì)任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立,若存在求出a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
2
,-
3
2
),
b
=(
1
2
,
3
2
),且存在實(shí)數(shù)x和y,使向量
m
=
a
+(x2-3)•
b
,
n
=-y
a
+x
b
,且
m
n

(Ⅰ)求函數(shù)y=f(x)的關(guān)系式,并求其單調(diào)區(qū)間和極值;
(Ⅱ)是否存在正數(shù)M,使得對(duì)任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤M成立?若存在求出M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A組:已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
3
3
,一條漸近線方程為y=
3
3
x

(1)求雙曲線C的方程
(2)過(guò)點(diǎn)(0,
2
)傾斜角為45°的直線l與雙曲線c恒有兩個(gè)不同的交點(diǎn)A和B,求|AB|.
B組:已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
3
3
,一條漸近線方程為y=
3
3
x

(1)求雙曲線C的方程
(2)過(guò)點(diǎn)(0,
2
)是否存在一條直線l與雙曲線c有兩個(gè)不同交點(diǎn)A和B且
OA
OB
=2,若存在求出直線方程,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y (萬(wàn)元)的幾組統(tǒng)計(jì)數(shù)據(jù):
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)散點(diǎn)圖,判斷y與x之間是否有較強(qiáng)線性相關(guān)性,若有求線性回歸直線方程
y
=
b
x+
a
;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y具有線性相關(guān)關(guān)系,測(cè)得一組數(shù)據(jù)如下:(2,30),(4,40),(5,60),(6,50),(8,70),若所求的回歸直線的斜率為6.5,則在這些樣本點(diǎn)中任取一點(diǎn),它在回歸直線上方的概率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案