若實(shí)數(shù)x,y滿足
x-y+1≥0
y+1≥0
x+y+1≤0
,則z=2x-y的最大值為( 。
A、
1
4
B、
1
2
C、1
D、2
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=2x-y的最大值.
解答: 解:由z=2x-y,得y=2x-z,作出不等式對(duì)應(yīng)的可行域(陰影部分),
平移直線y=2x-z,由平移可知當(dāng)直線y=2x-z,
經(jīng)過點(diǎn)A時(shí),直線y=2x-z的截距最小,此時(shí)z取得最大值,
y=-1
x+y+1=0
,解得
x=0
y=-1
,即A(0,1).
將A(0,-1)的坐標(biāo)代入z=2x-y,得z=0-(-1)=1,
即目標(biāo)函數(shù)z=2x-y的最大值為1.
故選:C.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,定義:A(x)表示不小于x的最小整數(shù).如A(
3
)=2,A(-0.4)=0
,A(-1.1)=-1.
(理科)若A(2x•A(x))=5,則正實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點(diǎn),如果|AB|=8,那么直線l的方程為( 。
A、5x-12y+20=0
B、x+4=0或5x-12y+20=0
C、5x+12y+20=0或x+4=0
D、x+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,使得x02+2x0+4>0”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(0,2,1),向量
b
=(-1,1,-2),則向量
a
與向量
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中有兩條中線所在直線方程分別為3x-2y+2=0,3x+5y-12=0.則當(dāng)頂點(diǎn)A為(-4,2)時(shí),求BC邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinx,-1),
n
=(
3
cosx,-
1
2
),函數(shù)f(x)=
m
2
+
m
n
-2
(1)求函數(shù)的單調(diào)增區(qū)間
(2)將函數(shù)f(x)的圖象的橫坐標(biāo)擴(kuò)大到原來的2倍,在向左平移
π
3
的單位,得到函數(shù)g(x),若△ABC的三邊a,b,c所對(duì)的角為A,B,C,且三邊a,b,c成等差數(shù)列,且g(B)=
3
2
,試求(cosA-cosC)2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)命題“若x2-3x+2=0,則x=1“的逆命題為“若x≠1,則x2-3x+2=0”;
(2)定義在R上的奇函數(shù)f(x),滿足f(x+2)=-f(x),則f(6)=0;
(3)函數(shù)y=log2x+x2-2在區(qū)間(1,2)內(nèi)只有一個(gè)零點(diǎn);
(4)已知p:?x∈R,sinx≤1,q:若a<b,則am2<bm2,則p∧q為真命題.
其中正確命題的序號(hào)是
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的方向向量
a
=(2,4,x),直線l2的方向向量
b
=(2,y,2),若|
a
|=6,且
a
b
,則x+y的值是( 。
A、-3或1B、3或-1
C、-3D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案