2.已知m,n∈R,f(x)=x2-mnx.
(1)當n=1時,解關于x的不等式:f(x)>2m2;
(2)若m>0,n>0,且m+n=1,證明:$f(\frac{1}{m})+f(\frac{1}{n})≥7$.

分析 (1)化簡不等式,然后通過分類討論求解即可.
(2)化簡不等式的左側,構造二次函數(shù),然后求解即可.

解答 解:(1)不等式f(x)>2m2代入整理為x2-mx-2m2>0,
∴(x-2m)(x+m)>0,
當m>0時,{x|x>2m或x<-m},
m=0時,{x|x≠0},
m<0時,{x|x>-m或x<2m}…(6分)
(2)$f(\frac{1}{m})+f(\frac{1}{n})=\frac{1}{m^2}+\frac{1}{n^2}-1={(\frac{1}{mn})^2}-2(\frac{1}{mn})-1$,
∵m+n=1,∴$mn≤\frac{1}{4}$,∴$\frac{1}{mn}≥4$,所以${(\frac{1}{mn})^2}-2(\frac{1}{mn})-1≥7$,
即$f(\frac{1}{m})+f(\frac{1}{n})≥7$…(12分)

點評 本題考查不等式的解法與證明,考查分類討論思想以及轉化思想的應用,難度比較大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知a=20.3,b=log20.3,c=0.32,則( 。
A.c<b<aB.b<c<aC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函數(shù)f(x)極值;
(2)求g(x)單調區(qū)間,
(3)求證:x>0時,不等式g′(x)≥1+lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對?x∈R都有f(x-1)=f(x+1)成立,當x∈(0,1]且x1≠x2時,有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.給出下列命題
(1)f(1)=0        
(2)f(x)在[-2,2]上有4個零點
(3)點(2016,0)是函數(shù)y=f(x)的一個對稱中心
(4)x=2014是函數(shù)y=f(x)圖象的一條對稱軸.
則正確是(1)(3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知二次方程x2+y2+2x+a=0表示圓,則a的取值范圍為(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.命題“若xy=0,則x2+y2=0”與它的逆命題、否命題、逆否命題中,真命題的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.己知函數(shù)f(x)=e${\;}^{\sqrt{3}x}$•sinx,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]
(1)求f(x)的單調遞增區(qū)間
(2)函數(shù)g(x)=f′(x)•f(-x)+$\frac{\sqrt{3}}{2}$,x∈[-$\frac{π}{4}$,$\frac{π}{4}$],試求出其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,已知a=2,b=x,B=30°.如果x=1,則∠A=90°;如果x=$\frac{{2\sqrt{3}}}{3}$,則∠A=60°或120°.

查看答案和解析>>

同步練習冊答案