(2012•棗莊一模)已知21=2,22=4,23=8,…,則22012個位上的數(shù)字為( 。
分析:分析可得4個數(shù)字為一循環(huán),求出2012里面有幾個4,還余幾,再根據(jù)余數(shù)判斷.
解答:解:∵21=2,個位數(shù)字是2,22=4,個位數(shù)字是4,23=8,個位數(shù)字是8,24=16,個位數(shù)字是6,25=32,個位數(shù)字是2; …
4個數(shù)字為一循環(huán),求出2012里面有幾個4,還余幾,再根據(jù)余數(shù)判斷.
∵2012÷4=503;
沒有余數(shù),說明22012的個位數(shù)字是6.
故選C.
點評:本題主要考查數(shù)列的函數(shù)特性,函數(shù)的周期性的應用,關鍵是先通過部分數(shù)字的變化情況,找出循環(huán)變化的規(guī)律,再由此求解,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)設f(x)=
x-3,x≥10
f[f(x+5),x<10
則f(8)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)如圖,CDEF是以圓O為圓心,半徑為1的圓的內(nèi)接正方形,將一顆豆子隨機地扔到該圓內(nèi),用A表示事件“豆子落在扇形OCFH內(nèi)”(點H將劣弧
EF
二等分),則事件A發(fā)生的概率P(A)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)給定兩個長度為1的平面向量
OA
OB
,它們的夾角為120°,如圖所示,點C在以O為圓心的圓弧
AB
上變動.若
OC
=x
OA
+y
OB
(x,y∈R),則x-y的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)設數(shù)列{an}滿足a1=1,a2=2,對任意的n∈N*,an+2是an+1與an的等差中項.
(1)設bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(2)寫出數(shù)列{an}的通項公式(不要求計算過程),令cn=
3
2
n(
5
3
-an)
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)已知函數(shù)f(x)=
1
3
ax3+
b
2
x2+x+1
,其中a>0,a,b∈R.
(1)當a,b滿足什么條件時,f(x)取得極值?
(2)若f(x)在區(qū)間[1,2]上單調(diào)遞增,試用a表示b的取值范圍.

查看答案和解析>>

同步練習冊答案