分析 利用零點存在定理,構(gòu)造函數(shù)使得f(1)•f(2)<0,求出a+b的范圍即可.
解答 解:關(guān)于x的方程ax2+bx-2=0(a>0,b>0)有兩個實數(shù)根,
其中一個根在區(qū)間(1,2)內(nèi),令f(x)=ax2+bx-2
即:方程對應(yīng)的函數(shù)圖象在(1,2)內(nèi)與x軸有一個交點,
滿足f(1)•f(2)<0,
∴(a+b-2)(4a+2b-2)<0
(a+b-2)(2a+b-1)<0
若a+b-2<0,即a+b<2時,
則2a+b-1>0,即2(a+b)>b+1>1
即a+b>$\frac{1}{2}$;
若a+b-2>0,則2a+b-1>0
不滿足條件;
所以a+b∈($\frac{1}{2}$,2),
故答案為:($\frac{1}{2}$,2).
點評 本題考查一元二次方程根與系數(shù)的關(guān)系,零點存在定理,不等式的解法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 | B. | 垂心 | C. | 內(nèi)心 | D. | 外心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 9 | C. | 12 | D. | 15 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com