已知橢圓C的左、右焦點(diǎn)坐標(biāo)分別是(-,0),(,0),離心率是.直線y=t與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P,圓心為P.
(1)求橢圓C的方程;
(2)若圓P與x軸相切,求圓心P的坐標(biāo);
(3)設(shè)Q(x,y)是圓P上的動(dòng)點(diǎn),當(dāng)t變化時(shí),求y的最大值.

(1)+y2=1  (2)(0,±)  (3)2

解析解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/2/toce5.png" style="vertical-align:middle;" />=,且c=,
所以a=,b==1.
所以橢圓C的方程為+y2=1.
(2)由題意知P(0,t)(-1<t<1).

得x=±.
所以圓P的半徑為.
當(dāng)圓P與x軸相切時(shí),|t|=.
解得t=±.
所以圓心P的坐標(biāo)是(0,±).
(3)由(2)知,圓P的方程為x2+(y-t)2=3(1-t2).
因?yàn)辄c(diǎn)Q(x,y)在圓P上,
所以y=t±≤t+.
設(shè)t="cos" θ,θ∈(0,π),
則t+="cos" θ+sin θ=2sin(θ+).
當(dāng)θ=,即t=,且x=0時(shí),y取最大值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦距為2,且過(guò)點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右焦點(diǎn)分別為,,過(guò)點(diǎn)的直線與橢圓C交于兩點(diǎn).
①當(dāng)直線的傾斜角為時(shí),求的長(zhǎng);
②求的內(nèi)切圓的面積的最大值,并求出當(dāng)的內(nèi)切圓的面積取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓經(jīng)過(guò)點(diǎn),離心率,直線的方程為.

(1)求橢圓的方程;
(2)是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線與直線相交于點(diǎn),記的斜率分別為.問(wèn):是否存在常數(shù),使得?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,動(dòng)點(diǎn)到兩定點(diǎn)構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為。

(1)求軌跡的方程;
(2)設(shè)直線軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C1:+=1(a>b>0),拋物線C2:x2+by=b2.

(1)若C2經(jīng)過(guò)C1的兩個(gè)焦點(diǎn),求C1的離心率;
(2)設(shè)A(0,b),Q(3,b),又M,N為C1與C2不在y軸上的兩個(gè)交點(diǎn),若△AMN的垂心為B(0,b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們把離心率為e=的雙曲線(a>0,b>0)稱(chēng)為黃金雙曲線.如圖,是雙曲線的實(shí)軸頂點(diǎn),是虛軸的頂點(diǎn),是左右焦點(diǎn),在雙曲線上且過(guò)右焦點(diǎn),并且軸,給出以下幾個(gè)說(shuō)法:

①雙曲線x2-=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是(  )

A.①②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L(zhǎng),設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿(mǎn)足條件m=n的點(diǎn)M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過(guò)點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于.若存在,請(qǐng)求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案