橢圓的焦點是為橢圓上一點,且的等差中項,則橢圓的方程為____________.

 

【答案】

【解析】試題分析:根據(jù)的等差中項可得:

又∵所求橢圓的方程為。

考點:橢圓的定義及其標(biāo)準(zhǔn)方程。

點評:求橢圓方程要先判斷焦點位置,然后求出代入。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點是F1(-1,0),F(xiàn)2(1,0),P為橢圓上一點,且|F1F2|是|PF1|和|PF2|的等差中項.
(Ⅰ)求橢圓的方程;
(Ⅱ)求△PF1F2面積的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:云南省玉溪一中2012屆高三第三次統(tǒng)測數(shù)學(xué)理科試題 題型:044

如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓C與橢圓相似,且橢圓C的一個短軸端點是拋物線的焦點.

(Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)橢圓E的中心在原點,對稱軸在坐標(biāo)軸上,直線l∶y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點,且與橢圓E交于H,K兩點.若線段AB與線段HK的中點重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)選修2-1 2.2橢圓練習(xí)卷(解析版) 題型:解答題

已知橢圓的焦點是為橢圓上一點,且的等差中項.

(1)求橢圓的方程;

(2)若點在第三象限,且,求

 

查看答案和解析>>

同步練習(xí)冊答案